Special Issue "Polymer Films for Photovoltaic Applications"

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Membranes and Films".

Deadline for manuscript submissions: closed (30 April 2022) | Viewed by 15673

Printed Edition Available!
A printed edition of this Special Issue is available here.

Special Issue Editor

Prof. Dr. Bożena Jarząbek
E-Mail Website1 Website2
Guest Editor
Center of Polymer and Carbon Materials of the Polish Academy of Sciences, 41-819 Zabrze, Poland
Interests: organic materials and conjugated polymers; thin films and nanotechnology; materials characterization; optical spectroscopy; absorption edge parameters; electronic transitions; thermo-optical properties; doping; polymer films in optoelectronic structures
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue focuses on the polymer thin films and polymer blend films in photovoltaic (PV) structures. Organic materials are widely used today in optoelectronic devices, such as organic solar cells (OSCs), mainly due to the low cost of production (thin films may be deposited at low temperature on a large surface, on flexible substrates). However, polymer compounds in OSC systems also have certain limitations, such as low efficiency and short lifetime of devices, resulting from an insufficient thermal and time stability. Polymers, which may be utilized in PV systems, should exhibit the appropriate optical properties (e.g., a wide range of absorption and low energy gap), good durability and stability (not undergoing any phase transitions or degradation in the temperature range in which the system is working), and relevant electronic structure (good alignment of molecular orbitals of donor and acceptor compounds in bulk heterojunction (BHJ) organic solar cells).

This Special Issue covers all the fields related to polymer films for photovoltaic applications, but special attention will be given to the following aspects:

  • Synthesis and suitable modification of polymer structure, to obtain polymer thin films for PV devices;
  • Influence of film deposition (TVE—thermal vacuum evaporation, CVD—chemical vapor deposition, spin coating, spray, etc.) on properties of polymer films;
  • Thermo-optical properties of polymer thin films and blends of polymer films, as potential parts of PV systems;
  • Influence of doping or protonation of polymer thin films and blend polymer films on their properties;
  • Polymer thin films, as active layers in PV solar cells—correlation of chemical structure and PV properties;
  • BHJ solar cells with polymer blends films—the choice of blend film composition to obtain the best PV parameters.

Authors are welcome to submit their latest research in the form of original full articles, communications, or reviews on this topic.

Prof. Dr. Bożena Jarząbek
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • polymer thin films
  • polymer blends films
  • doped polymer films
  • thermo-optical properties
  • organic solar cells
  • BHJ photovoltaic structures

Published Papers (17 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Article
Electrical Transport, Structural, Optical and Thermal Properties of [(1−x)Succinonitrile: xPEO]-LiTFSI-Co(bpy)3(TFSI)2-Co(bpy)3(TFSI)3 Solid Redox Mediators
Polymers 2022, 14(9), 1870; https://doi.org/10.3390/polym14091870 - 03 May 2022
Cited by 2 | Viewed by 585
Abstract
The solar cell has been considered one of the safest modes for electricity generation. In a dye-sensitized solar cell, a commonly used iodide/triiodide redox mediator inhibits back-electron transfer reactions, regenerates dyes, and reduces triiodide into iodide. The use of iodide/triiodide redox, however, imposes [...] Read more.
The solar cell has been considered one of the safest modes for electricity generation. In a dye-sensitized solar cell, a commonly used iodide/triiodide redox mediator inhibits back-electron transfer reactions, regenerates dyes, and reduces triiodide into iodide. The use of iodide/triiodide redox, however, imposes several problems and hence needs to be replaced by alternative redox. This paper reports the first Co2+/Co3+ solid redox mediators, prepared using [(1−x)succinonitrile: xPEO] as a matrix and LiTFSI, Co(bpy)3(TFSI)2, and Co(bpy)3(TFSI)3 as sources of ions. The electrolytes are referred to as SN_E (x = 0), Blend 1_E (x = 0.5 with the ethereal oxygen of the PEO-to-lithium ion molar ratio (EO/Li+) of 113), Blend 2_E (x = 0.5; EO/Li+ = 226), and PEO_E (x = 1; EO/Li+ = 226), which achieved electrical conductivity of 2.1 × 10−3, 4.3 × 10−4, 7.2 × 10−4, and 9.7 × 10−7 S cm−1, respectively at 25 °C. Only the blend-based polymer electrolytes exhibited the Vogel-Tamman-Fulcher-type behavior (vitreous nature) with a required low pseudo-activation energy (0.05 eV), thermal stability up to 125 °C, and transparency in UV-A, visible, and near-infrared regions. FT-IR spectroscopy demonstrated the interaction between salt and matrix in the following order: SN_E < Blend 2_E < Blend 1_E << PEO_E. The results were compared with those of acetonitrile-based liquid electrolyte, ACN_E. Full article
(This article belongs to the Special Issue Polymer Films for Photovoltaic Applications)
Show Figures

Graphical abstract

Communication
Synthesis of a Low-Cost Thiophene-Indoloquinoxaline Polymer Donor and Its Application to Polymer Solar Cells
Polymers 2022, 14(8), 1554; https://doi.org/10.3390/polym14081554 - 11 Apr 2022
Cited by 1 | Viewed by 709
Abstract
A simple wide-bandgap conjugated polymer based on indoloquinoxaline unit (PIQ) has been newly designed and synthesized via cheap and commercially available starting materials. The basic physicochemical properties of the PIQ have been investigated. PIQ possesses a broad and strong absorption band [...] Read more.
A simple wide-bandgap conjugated polymer based on indoloquinoxaline unit (PIQ) has been newly designed and synthesized via cheap and commercially available starting materials. The basic physicochemical properties of the PIQ have been investigated. PIQ possesses a broad and strong absorption band in the wavelength range of 400~660 nm with a bandgap of 1.80 eV and lower-lying highest occupied molecular orbital energy level of −5.58 eV. Polymer solar cells based on PIQ and popular acceptor Y6 blend display a preliminarily optimized power conversion efficiency of 6.4%. The results demonstrate indoloquinoxaline is a promising building unit for designing polymer donor materials for polymer solar cells. Full article
(This article belongs to the Special Issue Polymer Films for Photovoltaic Applications)
Show Figures

Graphical abstract

Article
Comparison of Crosslinking Kinetics of UV-Transparent Ethylene-Vinyl Acetate Copolymer and Polyolefin Elastomer Encapsulants
Polymers 2022, 14(7), 1441; https://doi.org/10.3390/polym14071441 - 01 Apr 2022
Cited by 1 | Viewed by 697
Abstract
Encapsulants based on ethylene-vinyl acetate copolymers (EVA) or polyolefin elastomers (POE) are essential for glass or photovoltaic module laminates. To improve their multi-functional property profile and their durability, the encapsulants are frequently peroxide crosslinked. The crosslinking kinetics are affected by the macromolecular structure [...] Read more.
Encapsulants based on ethylene-vinyl acetate copolymers (EVA) or polyolefin elastomers (POE) are essential for glass or photovoltaic module laminates. To improve their multi-functional property profile and their durability, the encapsulants are frequently peroxide crosslinked. The crosslinking kinetics are affected by the macromolecular structure and the formulation with stabilizers such as phenolic antioxidants, hindered amine light stabilizers or aromatic ultraviolet (UV) absorbers. The main objective of this study was to implement temperature-rise and isothermal dynamic mechanical analysis (DMA) approaches in torsional mode and to assess and compare the crosslinking kinetics of novel UV-transparent encapsulants based on EVA and POE. The gelation time was evaluated from the crossover of the storage and loss shear modulus. While the investigated EVA and POE encapsulants revealed quite similar activation energy values of 155 kJ/moles, the storage modulus and complex viscosity in the rubbery state were significantly higher for EVA. Moreover, the gelation of the polar EVA grade was about four times faster than for the less polar POE encapsulant. Accordingly, the curing reaction of POE was retarded up to a factor of 1.6 to achieve a progress of crosslinking of 95%. Hence, distinct differences in the crosslinking kinetics of the UV-transparent EVA and POE grades were ascertained, which is highly relevant for the lamination of modules. Full article
(This article belongs to the Special Issue Polymer Films for Photovoltaic Applications)
Show Figures

Graphical abstract

Article
Effects of Mechanical Deformation on the Opto-Electronic Responses, Reactivity, and Performance of Conjugated Polymers: A DFT Study
Polymers 2022, 14(7), 1354; https://doi.org/10.3390/polym14071354 - 26 Mar 2022
Viewed by 659
Abstract
The development of polymers for optoelectronic applications is an important research area; however, a deeper understanding of the effects induced by mechanical deformations on their intrinsic properties is needed to expand their applicability and improve their durability. Despite the number of recent studies [...] Read more.
The development of polymers for optoelectronic applications is an important research area; however, a deeper understanding of the effects induced by mechanical deformations on their intrinsic properties is needed to expand their applicability and improve their durability. Despite the number of recent studies on the mechanochemistry of organic materials, the basic knowledge and applicability of such concepts in these materials are far from those for their inorganic counterparts. To bring light to this, here we employ molecular modeling techniques to evaluate the effects of mechanical deformations on the structural, optoelectronic, and reactivity properties of traditional semiconducting polymers, such as polyaniline (PANI), polythiophene (PT), poly (p-phenylene vinylene) (PPV), and polypyrrole (PPy). For this purpose, density functional theory (DFT)-based calculations were conducted for the distinct systems at varied stretching levels in order to identify the influence of structural deformations on the electronic structure of the systems. In general, it is noticed that the elongation process leads to an increase in electronic gaps, hypsochromic effects in the optical absorption spectrum, and small changes in local reactivities. Such changes can influence the performance of polymer-based devices, allowing us to establish significant structure deformation response relationships. Full article
(This article belongs to the Special Issue Polymer Films for Photovoltaic Applications)
Show Figures

Graphical abstract

Article
Durability and Performance of Encapsulant Films for Bifacial Heterojunction Photovoltaic Modules
Polymers 2022, 14(5), 1052; https://doi.org/10.3390/polym14051052 - 06 Mar 2022
Cited by 1 | Viewed by 782
Abstract
Energy recovery from renewable sources is a very attractive, and sometimes, challenging issue. To recover solar energy, the production of photovoltaic (PV) modules becomes a prosperous industrial certainty. An important material in PV modules production and correct functioning is the encapsulant material and [...] Read more.
Energy recovery from renewable sources is a very attractive, and sometimes, challenging issue. To recover solar energy, the production of photovoltaic (PV) modules becomes a prosperous industrial certainty. An important material in PV modules production and correct functioning is the encapsulant material and it must have a good performance and durability. In this work, accurate characterizations of performance and durability, in terms of photo- and thermo-oxidation resistance, of encapsulants based on PolyEthylene Vinyl Acetate (EVA) and PolyOlefin Elastomer (POE), containing appropriate additives, before (pre-) and after (post-) lamination process have been carried out. To simulate industrial lamination processing conditions, both EVApre-lam and POEpre-lam sheets have been subjected to prolonged thermal treatment upon high pressure. To carry out an accurate characterization, differential scanning calorimetry, rheological and mechanical analysis, FTIR and UV-visible spectroscopy analyses have been performed on pre- and post-laminated EVA and POE. The durability, in terms of photo- and thermo-oxidation resistance, of pre-laminated and post-laminated EVA and POE sheets has been evaluated upon UVB exposure and prolonged thermal treatment, and the progress of degradation has been monitored by spectroscopy analysis. All obtained results agree that the lamination process has a beneficial effect on 3D-structuration of both EVA and POE sheets, and after lamination, the POE shows enhanced rigidity and appropriate ductility. Finally, although both EVA and POE can be considered good candidates as encapsulants for bifacial PV modules, it seems that the POE sheets show a better resistance to oxidation than the EVA sheets. Full article
(This article belongs to the Special Issue Polymer Films for Photovoltaic Applications)
Show Figures

Graphical abstract

Article
Design of an Efficient PTB7:PC70BM-Based Polymer Solar Cell for 8% Efficiency
Polymers 2022, 14(5), 889; https://doi.org/10.3390/polym14050889 - 23 Feb 2022
Cited by 3 | Viewed by 880
Abstract
Polymer semiconductors may have the potential to fully replace silicon in next-generation solar cells because of their advantages such as cheap cost, lightweight, flexibility, and the ability to be processed for very large area applications. Despite these advantages, polymer solar cells are still [...] Read more.
Polymer semiconductors may have the potential to fully replace silicon in next-generation solar cells because of their advantages such as cheap cost, lightweight, flexibility, and the ability to be processed for very large area applications. Despite these advantages, polymer solar cells are still facing a certain lack of power-conversion efficiency (PCE), which is essentially required for commercialization. Recently, bulk heterojunction of PTB7:PC70BM as an active layer showed remarkable performance for polymer solar cells in terms of PCE. Thus, in this paper, we developed and optimized a novel design using PEDOT:PSS and PFN-Br as electron and hole transport layers (ETL and HTL) for ITO/PEDOT:PSS/PT7B:PC70BM/PFN-Br/Ag as a polymer solar cell, with the help of simulation. The optimized solar cell has a short-circuit current (Isc) of 16.434 mA.cm−2, an open-circuit voltage (Voc) of 0.731 volts, and a fill-factor of 68.055%, resulting in a maximum PCE of slightly above 8%. The findings of this work may contribute to the advancement of efficient bulk-heterojunction-based polymer solar cells. Full article
(This article belongs to the Special Issue Polymer Films for Photovoltaic Applications)
Show Figures

Figure 1

Article
Thermo-Optical and Structural Studies of Iodine-Doped Polymer: Fullerene Blend Films, Used in Photovoltaic Structures
Polymers 2022, 14(5), 858; https://doi.org/10.3390/polym14050858 - 22 Feb 2022
Cited by 1 | Viewed by 576
Abstract
Optical and structural properties of a blend thin film of (1:1 wt.) of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) doped with iodine (I2) and then exposed to a stepwise heating were reported and compared with the properties of doped [...] Read more.
Optical and structural properties of a blend thin film of (1:1 wt.) of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) doped with iodine (I2) and then exposed to a stepwise heating were reported and compared with the properties of doped P3HT films. The UV-Vis(T) absorption measurements were performed in situ during annealing runs, at the precisely defined temperatures, in a range of 20–210 °C. It was demonstrated that this new method allows one to observe the changes of absorption spectra, connected with the iodine release and other structural processes upon annealing. In addition, the thermally-induced changes of the exciton bandwidth (W) and the absorption edge parameters, i.e., the energy gap (EG) and the Urbach energy (EU) were discussed in the context of different length of conjugation and the structural disorder in polymers and blends films. During annealing, several stages were distinguished and related to the following processes as: the iodine escape and an increase in P3HT crystallinity, the orderly stacking of polymer chains, the thermally inducted structural defects and the phase separation caused by an aggregation of PCBM in the polymer matrix. Moreover, the detailed X-ray diffraction studies, performed for P3HT and P3HT:PCBM films, before and after doping and then after their thermal treatment, allowed us to consider the structural changes of polymer and blend films. The effect of iodine content and the annealing process on the bulk heterojunction (BHJ) solar cells parameters was checked, by the impedance spectroscopy (IS) measurements and the J-V characteristics registration. All of the investigated P3HT:PCBM blend films showed the photovoltaic effect; the increase in power conversion efficiency (PCE) upon iodine doping was demonstrated. Full article
(This article belongs to the Special Issue Polymer Films for Photovoltaic Applications)
Show Figures

Figure 1

Article
A Refined Prediction Parameter for Molecular Alignability in Stretched Polymers and a New Light-Harvesting Material for AlGaAs Photovoltaics
Polymers 2022, 14(3), 532; https://doi.org/10.3390/polym14030532 - 28 Jan 2022
Viewed by 789
Abstract
Light-harvesting concentrators have a high potential to make highly efficient but precious energy converters, such as multijunction photovoltaics, more affordable for everyday applications. They collect sunlight, including diffusively scattered light, on large areas and redirect it to much smaller areas of the highly [...] Read more.
Light-harvesting concentrators have a high potential to make highly efficient but precious energy converters, such as multijunction photovoltaics, more affordable for everyday applications. They collect sunlight, including diffusively scattered light, on large areas and redirect it to much smaller areas of the highly efficiency solar cells. Among the best current concepts are pools of randomly oriented light-collecting donor molecules that transfer all excitons to few aligned acceptors reemitting the light in the direction of the photovoltaics. So far, this system has only been realized for the 350–550 nm wavelength range, suitable for AlGaInP photovoltaics. This was achieved by using acceptor molecules that aligned during mechanical stretching of polymers together with donors, that stay random in that very same material and procedure. However, until recently, very little was known about the factors that are responsible for the alignability of molecules in stretched polymers and therefore it was difficult to find suitable donors and acceptors, as well as for other spectral ranges. Recently, a structural parameter was introduced with a high predictivity for the alignability of molecules that contain rigid band-like structures or linear aromatic π-systems. However, for light concentrators in more red spectral ranges, molecular systems often contain larger and extended, planar-like π-systems for which the previously reported parameter is not directly applicable. Here, we present a refined prediction parameter also suitable for larger plane-like structures. The new parameter depends on the number of in-plane atoms divided by out-of-plane atoms as determined by computational geometry optimization and additionally the planar aspect ratio for molecules that contain only in-plane atoms. With the help of this parameter, we found a new system that can efficiently collect and redirect light for the second 500–700 nm AlGaAs layer of current world-record multijunction photovoltaics. Similarly, as the previously reported system for the blue-green layer, it has also overall absorption and re-directioning quantum efficiencies close to 80–100%. Both layers, together, already cover about 75% of the energy in the solar spectrum. Full article
(This article belongs to the Special Issue Polymer Films for Photovoltaic Applications)
Show Figures

Graphical abstract

Article
Investigations of Fused Deposition Modeling for Perovskite Active Solar Cells
Polymers 2022, 14(2), 317; https://doi.org/10.3390/polym14020317 - 13 Jan 2022
Cited by 1 | Viewed by 520
Abstract
The advent of Fused Deposition Modeling (FDM; or 3D printing) has significantly changed the way many products are designed and built. It has even opened opportunities to fabricate new products on-site and on-demand. In addition, parallel efforts that introduce new materials into the [...] Read more.
The advent of Fused Deposition Modeling (FDM; or 3D printing) has significantly changed the way many products are designed and built. It has even opened opportunities to fabricate new products on-site and on-demand. In addition, parallel efforts that introduce new materials into the FDM process have seen great advances as well. New additives have been demonstrably utilized to achieve thermal, electrical, and structural property improvements. This combination of fabrication flexibility and material additives make FDM an ideal candidate for investigation of perovskite materials in new solar cell efforts. In this work, we fabricate and characterize a perovskite-based solar cell polymer designed for the FDM fabrication processes. Perovskite solar cells have garnered major research interest since their discovery in 2009. Perovskites, specifically methylammonium lead iodide, offer beneficial properties to solar cell fabrication such as long minority charge carrier distance, high light absorption, and simple fabrication methods. Despite the great potential of these materials, however, stability remains an issue in solar cell utilization as the material degrades under ultraviolet light, exposure to oxygen and water, as well as increased temperatures. To mitigate degradation, different fabrication methods have been utilized. Additionally, multiple groups have utilized encapsulation methods post-fabrication and in situ solution processed integration of polymer materials into the solar cell to prevent degradation. In this paper, we leverage the unique ability of FDM to encapsulate perovskite materials and yield a MAPbI3-PCL solar material as the active layer for solar cell use. In this manner, increased ability to resist UV light degradation and material stability from other environmental factors can be achieved. This study provides characterization of the material via multiple techniques like SEM (Scanning Electron Microscopy) and XRD (X-ray Diffraction) as well as absorbance, transmittance, and photocurrent response. Investigations of processing on perovskite degradation as well as initial solar simulated response are recorded. Unique aspects of the resulting material and process are noted including improved performance with increased operating temperature. Increased electron–hole pair generation is observed for 200 μm FDM-printed PCL film, achieving a 45% reduction in resistance under peak incident flux of 590 W/m2 with the addition of MAPbl3. This work establishes insight into the use of FDM for full solar cell fabrication and points to the next steps of research and development in this growing field. Full article
(This article belongs to the Special Issue Polymer Films for Photovoltaic Applications)
Show Figures

Figure 1

Article
Investigation of Dye Dopant Influence on Electrooptical and Morphology Properties of Polymeric Acceptor Matrix Dedicated for Ternary Organic Solar Cells
Polymers 2021, 13(23), 4099; https://doi.org/10.3390/polym13234099 - 25 Nov 2021
Cited by 1 | Viewed by 600
Abstract
The publication presents the results of investigations of the influence of dye dopant on the electrooptical and morphology properties of a polymeric donor:acceptor mixture. Ternary thin films (polymer:dye:fullerene) were investigated for potential application as an active layer in organic solar cells. The aim [...] Read more.
The publication presents the results of investigations of the influence of dye dopant on the electrooptical and morphology properties of a polymeric donor:acceptor mixture. Ternary thin films (polymer:dye:fullerene) were investigated for potential application as an active layer in organic solar cells. The aim of the research is to determine the effect of selected dye materials (dye D131, dye D149, dye D205, dye D358) on the three-component layer and their potential usefulness as an additional donor in ternary cells, based on P3HT donor and PC71BM acceptor. UV–vis spectroscopy studies were performed, and absorption and luminescence spectra were determined. Ellipsometry parameters for single dye and ternary layers have been measured. The analyses were performed using the Raman spectroscopy method, and the Raman spectra of the mixtures and single components have been determined. Organic layers were prepared and studied using scanning electron microscope and atomic force microscope. For dyes, ultraviolet photoelectron spectroscopy and X-ray photoelectron spectroscopy studies were carried out and the ternary system was presented and analyzed in terms of energy bands. Full article
(This article belongs to the Special Issue Polymer Films for Photovoltaic Applications)
Show Figures

Figure 1

Article
Thin-Film Luminescent Solar Concentrator Based on Intramolecular Charge Transfer Fluorophore and Effect of Polymer Matrix on Device Efficiency
Polymers 2021, 13(21), 3770; https://doi.org/10.3390/polym13213770 - 31 Oct 2021
Cited by 2 | Viewed by 817
Abstract
Luminescent solar concentrators (LSCs) provide a transformative approach to integrating photovoltaics into a built environment. In this paper, we report thin-film LSCs composed of intramolecular charge transfer fluorophore (DACT-II) and discuss the effect of two polymers, polymethyl methacrylate (PMMA), and poly (benzyl methacrylate) [...] Read more.
Luminescent solar concentrators (LSCs) provide a transformative approach to integrating photovoltaics into a built environment. In this paper, we report thin-film LSCs composed of intramolecular charge transfer fluorophore (DACT-II) and discuss the effect of two polymers, polymethyl methacrylate (PMMA), and poly (benzyl methacrylate) (PBzMA) on the performance of large-area LSCs. As observed experimentally, DACT-II with the charge-donating diphenylaminocarbazole and charge-accepting triphenyltriazine moieties shows a large Stokes shift and limited re-absorption losses in both polymers. Our results show that thin-film LSC (10 × 10 × 0.3 cm3) with optimized concentration (0.9 wt%) of DACT-II in PBzMA gives better performance than that in the PMMA matrix. In particular, optical conversion efficiency (ηopt) and power-conversion efficiency (ηPCE) of DACT-II/PBzMA LSC are 2.32% and 0.33%, respectively, almost 1.2 times higher than for DACT-II/PMMA LSC. Full article
(This article belongs to the Special Issue Polymer Films for Photovoltaic Applications)
Show Figures

Figure 1

Article
Impact-Resistant and Tough 3D Helicoidally Architected Polymer Composites Enabling Next-Generation Lightweight Silicon Photovoltaics Module Design and Technology
Polymers 2021, 13(19), 3315; https://doi.org/10.3390/polym13193315 - 28 Sep 2021
Cited by 2 | Viewed by 928
Abstract
Lightweight photovoltaics (PV) modules are important for certain segments of the renewable energy markets—such as exhibition halls, factories, supermarkets, farms, etc. However, lightweight silicon-based PV modules have their own set of technical challenges or concerns. One of them, which is the subject of [...] Read more.
Lightweight photovoltaics (PV) modules are important for certain segments of the renewable energy markets—such as exhibition halls, factories, supermarkets, farms, etc. However, lightweight silicon-based PV modules have their own set of technical challenges or concerns. One of them, which is the subject of this paper, is the lack of impact resistance, especially against hailstorms in deep winter in countries with four seasons. Even if the front sheet can be made sufficiently strong and impact-resistant, the silicon cells inside remain fragile and very prone to impact loading. This leads to cracks that significantly degrade performance (output power) over time. A 3D helicoidally architected fiber-based polymer composite has recently been found to exhibit excellent impact resistance, inspired by the multi-hierarchical internal structures of the mantis shrimp’s dactyl clubs. In previous work, our group demonstrated that via electrospinning-based additive manufacturing methodologies, weak polymer material constituents could be made to exhibit significantly improved toughness and impact properties. In this study, we demonstrate the use of 3D architected fiber-based polymer composites to protect the silicon solar cells by absorbing impact energy. The absorbed energy is equivalent to the energy that would impact the solar cells during hailstorms. We have shown that silicon cells placed under such 3D architected polymer layers break at substantially higher impact load/energy (compared to those placed under standard PV encapsulation polymer material). This could lead to the development of novel PV encapsulant materials for the next generation of lightweight PV modules and technology with excellent impact resistance. Full article
(This article belongs to the Special Issue Polymer Films for Photovoltaic Applications)
Show Figures

Graphical abstract

Article
Enhancement of Light Amplification of CsPbBr3 Perovskite Quantum Dot Films via Surface Encapsulation by PMMA Polymer
Polymers 2021, 13(15), 2574; https://doi.org/10.3390/polym13152574 - 02 Aug 2021
Cited by 5 | Viewed by 1482
Abstract
Photonic devices based on perovskite materials are considered promising alternatives for a wide range of these devices in the future because of their broad bandgaps and ability to contribute to light amplification. The current study investigates the possibility of improving the light amplification [...] Read more.
Photonic devices based on perovskite materials are considered promising alternatives for a wide range of these devices in the future because of their broad bandgaps and ability to contribute to light amplification. The current study investigates the possibility of improving the light amplification characteristics of CsPbBr3 perovskite quantum dot (PQD) films using the surface encapsulation technique. To further amplify emission within a perovskite layer, CsPbBr3 PQD films were sandwiched between two transparent layers of poly(methyl methacrylate) (PMMA) to create a highly flexible PMMA/PQD/PMMA waveguide film configuration. The prepared perovskite film, primed with a polymer layer coating, shows a marked improvement in both emission efficiency and amplified spontaneous emission (ASE)/laser threshold compared with bare perovskite films on glass substrates. Additionally, significantly improved photoluminescence (PL) and long decay lifetime were observed. Consequently, under pulse pumping in a picosecond duration, ASE with a reduction in ASE threshold of ~1.2 and 1.4 times the optical pumping threshold was observed for PQDs of films whose upper face was encapsulated and embedded within a cavity comprising two PMMA reflectors, respectively. Moreover, the exposure stability under laser pumping was greatly improved after adding the polymer coating to the top face of the perovskite film. Finally, this process improved the emission and PL in addition to enhancements in exposure stability. These results were ascribed in part to the passivation of defects in the perovskite top surface, accounting for the higher PL intensity, the slower PL relaxation, and for about 14 % of the ASE threshold decrease. Full article
(This article belongs to the Special Issue Polymer Films for Photovoltaic Applications)
Show Figures

Figure 1

Article
A Novel Poly-N-Epoxy Propyl Carbazole Based Memory Device
Polymers 2021, 13(10), 1594; https://doi.org/10.3390/polym13101594 - 15 May 2021
Cited by 1 | Viewed by 733
Abstract
Generally, polymer-based memory devices store information in a manner distinct from that of silicon-based memory devices. Conventional silicon memory devices store charges as either zero or one for digital information, whereas most polymers store charges by the switching of electrical resistance. For the [...] Read more.
Generally, polymer-based memory devices store information in a manner distinct from that of silicon-based memory devices. Conventional silicon memory devices store charges as either zero or one for digital information, whereas most polymers store charges by the switching of electrical resistance. For the first time, this study reports that the novel conducting polymer Poly-N-Epoxy-Propyl Carbazole (PEPC) can offer effective memory storage behavior. In the current research, the electrical characterization of a single layer memory device (metal/polymer/metal) using PEPC, with or without doping of charge transfer complexes 7,7,8,8-tetra-cyanoquino-dimethane (TCNQ), was investigated. From the current–voltage characteristics, it was found that PEPC shows memory switching effects in both cases (with or without the TCNQ complex). However, in the presence of TCNQ, the PEPC performs faster memory switching at relatively lower voltage and, therefore, a higher ON and OFF ratio (ION/IOFF ~ 100) was observed. The outcome of this study may help to further understand the memory switching effects of conducting polymer. Full article
(This article belongs to the Special Issue Polymer Films for Photovoltaic Applications)
Show Figures

Graphical abstract

Article
The Effect of Alkyl Substitution of Novel Imines on Their Supramolecular Organization, towards Photovoltaic Applications
Polymers 2021, 13(7), 1043; https://doi.org/10.3390/polym13071043 - 26 Mar 2021
Cited by 5 | Viewed by 906
Abstract
Three novel conjugated polyazomethines have been obtained by polycondensation of diamines consisting of the diimine system, with either 2,5-bis(octyloxy)terephthalaldehyde or 9-(2-ethylhexyl)carbazole-3,6-dicarboxaldehyde. Partial replacement of bulky solubilizing substituents with the smaller side groups has allowed to investigate the effect of supramolecular organization. All obtained [...] Read more.
Three novel conjugated polyazomethines have been obtained by polycondensation of diamines consisting of the diimine system, with either 2,5-bis(octyloxy)terephthalaldehyde or 9-(2-ethylhexyl)carbazole-3,6-dicarboxaldehyde. Partial replacement of bulky solubilizing substituents with the smaller side groups has allowed to investigate the effect of supramolecular organization. All obtained compounds have been subsequently identified using the NMR and FTIR spectroscopies and characterized by the thermogravimetric analysis, differential scanning calorimetry, cyclic voltammetry, UV–Vis spectroscopy, and X-ray diffraction. Investigated polymers have shown a good thermal stability and high glass transition temperatures. X-ray measurements have proven that partial replacement of octyloxy side chains with smaller methoxy groups induced a better planarization of macromolecule. Such modification has tuned the LUMO level of this molecule and caused a bathochromic shift of the lowest energy absorption band. On the contrary, imines consisting of N-ethylhexyl substituted carbazole units have not been so clearly affected by alkyl chain length modification. Photovoltaic activity of imines (acting as a donor) in bulk-heterojunction systems has been observed for almost all studied compounds, blended with the fullerene derivative (PCBM) in various weight ratios. Full article
(This article belongs to the Special Issue Polymer Films for Photovoltaic Applications)
Show Figures

Figure 1

Review

Jump to: Research

Review
Polymers in High-Efficiency Solar Cells: The Latest Reports
Polymers 2022, 14(10), 1946; https://doi.org/10.3390/polym14101946 - 11 May 2022
Cited by 2 | Viewed by 734
Abstract
Third-generation solar cells, including dye-sensitized solar cells, bulk-heterojunction solar cells, and perovskite solar cells, are being intensively researched to obtain high efficiencies in converting solar energy into electricity. However, it is also important to note their stability over time and the devices’ thermal [...] Read more.
Third-generation solar cells, including dye-sensitized solar cells, bulk-heterojunction solar cells, and perovskite solar cells, are being intensively researched to obtain high efficiencies in converting solar energy into electricity. However, it is also important to note their stability over time and the devices’ thermal or operating temperature range. Today’s widely used polymeric materials are also used at various stages of the preparation of the complete device—it is worth mentioning that in dye-sensitized solar cells, suitable polymers can be used as flexible substrates counter-electrodes, gel electrolytes, and even dyes. In the case of bulk-heterojunction solar cells, they are used primarily as donor materials; however, there are reports in the literature of their use as acceptors. In perovskite devices, they are used as additives to improve the morphology of the perovskite, mainly as hole transport materials and also as additives to electron transport layers. Polymers, thanks to their numerous advantages, such as the possibility of practically any modification of their chemical structure and thus their physical and chemical properties, are increasingly used in devices that convert solar radiation into electrical energy, which is presented in this paper. Full article
(This article belongs to the Special Issue Polymer Films for Photovoltaic Applications)
Show Figures

Figure 1

Review
Hybrid Organic–Inorganic Perovskite Halide Materials for Photovoltaics towards Their Commercialization
Polymers 2022, 14(5), 1059; https://doi.org/10.3390/polym14051059 - 07 Mar 2022
Cited by 4 | Viewed by 1234
Abstract
Hybrid organic–inorganic perovskite (HOIP) photovoltaics have emerged as a promising new technology for the next generation of photovoltaics since their first development 10 years ago, and show a high-power conversion efficiency (PCE) of about 29.3%. The power-conversion efficiency of these perovskite photovoltaics depends [...] Read more.
Hybrid organic–inorganic perovskite (HOIP) photovoltaics have emerged as a promising new technology for the next generation of photovoltaics since their first development 10 years ago, and show a high-power conversion efficiency (PCE) of about 29.3%. The power-conversion efficiency of these perovskite photovoltaics depends on the base materials used in their development, and methylammonium lead iodide is generally used as the main component. Perovskite materials have been further explored to increase their efficiency, as they are cheaper and easier to fabricate than silicon photovoltaics, which will lead to better commercialization. Even with these advantages, perovskite photovoltaics have a few drawbacks, such as their stability when in contact with heat and humidity, which pales in comparison to the 25-year stability of silicon, even with improvements are made when exploring new materials. To expand the benefits and address the drawbacks of perovskite photovoltaics, perovskite–silicon tandem photovoltaics have been suggested as a solution in the commercialization of perovskite photovoltaics. This tandem photovoltaic results in an increased PCE value by presenting a better total absorption wavelength for both perovskite and silicon photovoltaics. In this work, we summarized the advances in HOIP photovoltaics in the contact of new material developments, enhanced device fabrication, and innovative approaches to the commercialization of large-scale devices. Full article
(This article belongs to the Special Issue Polymer Films for Photovoltaic Applications)
Show Figures

Graphical abstract

Back to TopTop