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Abstract: Light-harvesting concentrators have a high potential to make highly efficient but precious
energy converters, such as multijunction photovoltaics, more affordable for everyday applications.
They collect sunlight, including diffusively scattered light, on large areas and redirect it to much
smaller areas of the highly efficiency solar cells. Among the best current concepts are pools of
randomly oriented light-collecting donor molecules that transfer all excitons to few aligned acceptors
reemitting the light in the direction of the photovoltaics. So far, this system has only been realized for
the 350–550 nm wavelength range, suitable for AlGaInP photovoltaics. This was achieved by using
acceptor molecules that aligned during mechanical stretching of polymers together with donors,
that stay random in that very same material and procedure. However, until recently, very little was
known about the factors that are responsible for the alignability of molecules in stretched polymers
and therefore it was difficult to find suitable donors and acceptors, as well as for other spectral
ranges. Recently, a structural parameter was introduced with a high predictivity for the alignability
of molecules that contain rigid band-like structures or linear aromatic π-systems. However, for light
concentrators in more red spectral ranges, molecular systems often contain larger and extended,
planar-like π-systems for which the previously reported parameter is not directly applicable. Here,
we present a refined prediction parameter also suitable for larger plane-like structures. The new
parameter depends on the number of in-plane atoms divided by out-of-plane atoms as determined
by computational geometry optimization and additionally the planar aspect ratio for molecules
that contain only in-plane atoms. With the help of this parameter, we found a new system that can
efficiently collect and redirect light for the second 500–700 nm AlGaAs layer of current world-record
multijunction photovoltaics. Similarly, as the previously reported system for the blue-green layer, it
has also overall absorption and re-directioning quantum efficiencies close to 80–100%. Both layers,
together, already cover about 75% of the energy in the solar spectrum.

Keywords: artificially light-harvesting; luminescent solar concentrators; molecular alignability
prediction; redirecting diffuse light

1. Introduction

Solar energy is one of the renewable energy sources with the greatest potential. How-
ever, the efficiency of conventional silicon solar cells is limited by the Shockley–Queisser
limit, so that a theoretical efficiency of ~30% cannot be exceeded here [1,2]. Therefore, in
recent years, work has been carried out on more effective photovoltaic cells and multi-
junction solar cells with much higher levels of efficiency have been developed. However,
the materials used are very expensive [3–5]. One solution to make such a type of photo-
voltaics usable for more everyday applications would be to collect the light on a large area
with more affordable material that redirects it towards much smaller areas of precious high
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efficiency solar cells. When only direct irradiation of sunlight would reach the earth’s sur-
face, lenses would very easily fulfil this task; however, very often the sunlight is diffusively
scattered by clouds or other surfaces and there is no way to refocus the light scattered by
standard ray optics. As an alternative, diffusive light can be concentrated by luminescent
solar concentrators (LSC) but, unfortunately, no such system was capable to really redirect
nearly 100% of the photons onto much smaller photovoltaic areas in the past [6].

If a LSC is used that consists of only one type of pigments, there are high intrinsic losses
termed escape-cone or reabsorption losses. The former is due to the fact that light absorbed
by molecules is usually reemitted in a similar direction as it came from, instead of being
redirected to the photovoltaics. The latter occurs because light is reabsorbed within the
waveguide due to the high concentration necessary for absorption of all sunlight. Both lead
to losses of energy that are intrinsically higher in single-pigment LSCs than the performance
advantage of high efficiency photovoltaics [7–11]. A great deal of research has been carried
out in recent years to find LSCs with the necessary better efficiencies [12–22], but so far the
necessary level of near to 100% light re-direction quantum yield was not reached.

One intrinsic loss mechanism of conventional LSCs, the high reabsorption losses, can
be overcome by donor–acceptor fluorophore systems. This requires, however, that the
donors are present in excess in order to collect all sunlight on short optical path lengths
that are necessary for a high concentration factor (=input surface/output surface, Figure 1)
and transfer it also with near to 100% efficiency to the acceptors. The acceptors, in turn,
must be far less concentrated to avoid reabsorption on the necessary long pathway to the
photovoltaics, which is also necessary for a high concentration factor. However, even then,
the acceptors would emit light in any direction, resulting in losses of those rays, that are
not directed into the direction of the PV cell (escape-cone losses).
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to 70 °C. About 4 g are weighed into a Petri plate and dried for 2 days at 60 °C under 200 
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2.3. Fluorescence Spectroscopy to Dertermine the Alignability 

Figure 1. In the FunDiLight LSC concept randomly oriented donor molecule pools (green) absorb
diffuse sunlight from all directions (yellow arrows) and transfer the energy (blue arrows) to few
aligned acceptor molecules (red). The oriented acceptor molecules then emit specifically in the
direction of the photovoltaic (PV, gray). The potential concentration factor is the ratio of input
and output surface. The FunDiLight LSC concept avoids intrinsic re-absorption and escape-cone
loss mechanisms of previous LSC concepts as it allows for high light absorption with the highly
concentrated donor molecules on short optical path lengths (and, consequently, small output surfaces)
while avoiding reabsorption due to the low concentrations of the emitting acceptors and escape-cone
losses as the oriented acceptors emit almost all light in directions towards the PV. This concept
enabled for the first time overall light-re-directioning quantum efficiencies on the order of 90% while
still allowing for reasonable high concentration factors (ratio of input surface/output surface): the
output surface can be small as all light is absorbed by the highly concentrated donors on short optical
path lengths and the input surface can be large as only little light is lost due to reabsorption by the
low concentrated, oriented acceptors on the longer path to the output surface.

Therefore, the best system so far is a two-component system that has a larger pool of
randomly oriented light-donor molecules and a much lower concentration of acceptors
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that are all aligned parallel to the photovoltaics (Figure 1). The highly concentrated and
randomly oriented donors collect the sunlight from all directions and pass it on to the
aligned acceptors via radiationless energy transfer. The aligned receptors, in turn, then
radiate specifically in the direction of the PV cell. This minimizes both the escape-cone
losses and the losses due to reabsorption in on system, which is also called FunDiLight LSC
(funnelling diffuse light re-directioning LSC) [23,24].

Realizing the necessary alignment of the acceptors and the random orientation of the
donors in the very same material was possible because, under mechanical stretching of
certain polymers, some types of molecules were aligned and others were not in that very
same material and procedure. In the first case of a FunDiLight LSC poly(vinyl alcohol)
(PVA) was used as a waveguide. However, until recently it was very unclear as to why
some molecules are aligned in the polymer during such a procedure whereas others stay
random. This knowledge, however, is crucial to developing high-efficiency FunDiLight
LSCs for other spectral ranges. Research into the reasons for this found a parameter with
a high predictive factor for a molecules alignability in the polymer PVA that depend on
the number of atoms that lie within rigid band-like structures of a molecules structure
versus the number of atoms that lie outside this band [24]. However, this parameter is
only well defined for molecules that contain a single rigid band-like structure. For larger
π-systems that are often necessary for light-harvesting in red spectral ranges, and that
contain structures that cannot be easily assigned to a single band, this parameter was not
well defined. Therefore, it was also more difficult to find appropriate donor and acceptor
dyes for highly efficient FunDiLight LSCs in the red spectral range [23,24].

Here, we present a refined and very well-defined parameter that is also capable to
predict the molecular alignability of larger π-systems and planar structures in stretched
polymers. The new parameter depends on the number of in-plane atoms divided by out-of-
plane atoms as determined by computational geometry optimization and additionally the
planar aspect ratio for molecules that contain only in-plane atoms. Using this parameter,
we found a new FunDiLight LSC that can efficiently collect and redirect light also in the
more reddish AlGaAs band gap of current world-record multijunction photovoltaics [3].
Similarly, as the previously reported system for the blue-green layer, it has also an overall
absorption and re-directioning quantum efficiency on the order of 90%. Both layers together
already cover about 75% of the energy of the solar spectrum.

2. Materials and Methods
2.1. Sample Preparation for Screening the Alignability of Dyes Containing Larger π-Systems

For screening of the alignability of all dyes investigated in this study, first, 2.2 g
poly(vinyl alcohol) (PVA) and the corresponding dye are weighed and dissolved in 20 mL
dimethyl sulfoxide, so that a 5 × 10−4 M dye-solution is created. This solution is heated for
3 h at 70 ◦C under a nitrogen atmosphere while stirring. About 4 g are weighed into a Petri
plate and dried for 2 days at 60 ◦C under 200 mbar. The resulting film is stretched 500% so
that one can see which molecules are aligned. For the three-dimensional single-molecule
polarization measurements a foil with a concentration of 10−10 M was prepared.

2.2. Sample Preparation of the Red FunDiLight LSC

As described before, 2.2 g PVA and 38.56 mg Lumogen F Red 300 and 1.73 mg Oxazine
170 perchlorate are weighed out and dissolved together in 20 mL dimethyl sulfoxide
(DMSO). This solution is also under a nitrogen atmosphere while stirring heated for 3 h
to 70 ◦C. About 4 g are weighed into a Petri plate and dried for 2 days at 60 ◦C under
200 mbar. The resulting film is stretched by 500%, with the Oxazine 170 aligning and the
Lumogen F Red 305 molecules remaining randomly oriented.

2.3. Fluorescence Spectroscopy to Dertermine the Alignability

A similar setup has already been described [24]. Briefly, the polymers are placed in
the fluorescence spectrometer. In addition, polarization filters are built in so that different
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combinations of polarizations can be measured. From this, the intensities of the parallel
and perpendicular components can be determined. For more details, see [24].

2.4. Three-Dimensional Single-Molecule Orientation Microscopy

A similar setup has already been described [24]. This time only, the Coherent Chameleon
laser was used, together with an optical parametric oscillator, to set the wavelengths used.
The polarization of the laser is rotated by a motorized half-wave plate during the entire
measurement. Since light is only absorbed parallel to the transition dipole moment, a
modulation of individual dyes can be seen. The dyes are measured from three directions.
This is achieved in that two wedge prisms arranged contrary to one another move the laser
beam laterally to the optical axis. When the laser hits the objective, it leaves it at an angle of
approximately 35◦ to the optical axis. The fluorescence of the wide field microscope setup
is detected with an EMCCD camera. For more details, see [24].

2.5. Pump-Probe Spectroscopy

A similar setup has already been described [23,24]. A high repetitive laser system
(Coherent OPA/Coherent RegA operated at 120 kHz, pumped by Coherent Verdi) was
used for the pump-probe experiments. The pump wavelength was set to 580 nm for all
measurements and a BP 580/10 (Thorlabs) was placed before the sample. A linear gradient
filter and a miniature spectrometer USB2000+ (Ocean Optics) were used to obtain certain
wavelengths from the OPA white light for the probe laser. To improve the signal to noise
ratio an ultrafast photodiode (provided by Prof. D. Schwarzer) with a set of 10 bandpass
filters for every used wavelength BP600/10-690/10 (Thorlabs) was used directly behind
the sample. One half-wave plate (achromatic half-wave plate, 400–800 nm, THORLABS) in
each beam-path was used for the polarization dependent measurements. A special sample
holder was used to minimize photobleaching by rotating the foil while maintaining its
orientation, similar to Pieper et al. [23]. The analysis of the data was completed similarly to
in Willich, Wegener et al. [24].

3. Results
3.1. An Improved Prediction Parameter and Scheme for the Alignability of Molecules in
Stretched Poylmers

To characterize the experimental alignability of the molecules investigated here, first
fluorescence excitation spectra were recorded with different polarization filters and the ratio
in the fluorescence intensities detected with polarization filters parallel or perpendicular to
the polymer stretching direction, ∆I‖/I⊥, was determined, as has already been described
in Willich, Wegener et al. [24]. In case of no molecular alignment, ∆I‖/I⊥ = 1 because
the fluorescence emission is the same parallel and perpendicular to mechanical stretching
direction. When more molecules are oriented along the stretching direction, the detected
intensity in the parallel direction increases, ∆I‖/I⊥ > 1. The larger ∆I‖/I⊥, the higher the
alignment. Values below 1 do not usually occur or mean an alignment of the transition
dipole moments orthogonal to the direction of stretching.

As already mentioned in the introduction, a parameter with a good predictive power
for the alignability of organic dyes in mechanically stretched PVA matrix has already been
introduced in Willich, Wegener et al. [24]. This parameter, η, was determined as follows.
First, the longest rigid and planar band in the molecule was identified. This band can
consist of a linear chain of aromatic rings, such as in Acridine Yellow G, or can be also
generated by other structural factors, such as in Coumarin 6, in which molecular rotation of
a single bond is inhibited by interactions between certain intramolecular groups. In cases
that were not immediately clear from the structure itself, a simple computational geometry
optimization (Chem3D, minimize energy (as MM2 Calculation)) was used to determine
structural parts that are planar, rigid bands. For example, Coumarin 6 is planar throughout
the entire band-like structural part denoted by red color in Figure 2. From the structure
itself, it was not entirely clear whether steric effects tilt both groups connected by the single
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bond but the computational geometry optimization confirmed that the red part is planar,
likely due to stabilizing interactions between the sulfur and the neighboring nitrogen atom.
All the atoms within the plane of this rigid band were then counted as intraband atoms,
NBand, whereas all atoms outside this rigid band, i.e., flexible side chains or rigid groups
that point in different directions than the rigid core band, are counted as out-of-band atoms,
NOutOfBand (See, for example, red bands in Figure 2). Hydrogen atoms were simply counted
with the assigned atoms they were attached to. The ratio of these atoms,

η = NBand/NOutOfBand (1)

had a very high predictive power for the alignability, ∆I‖/I⊥, of the molecules in stretched
polymers. This empiric observation can likely be explained by molecular forces aligning
longer rigid bands in polymers during stretching with all atoms pointing out of this band
in any three-dimensional directions, NOutOfBand, rather hindering this alignment (For more
examples see Figure 4 in [24]). Generally, it was observed that an η-parameter of >1 typically
predicts a good alignability of ∆I‖/I⊥ > 1.5.Polymers 2022, 14, x FOR PEER REVIEW 6 of 21 
 

 

 
Figure 2. Exemplary structures of molecules denoted with atoms counted for different predictors 
for the experimentally observed alignability, ∆I∥/I⊥, in stretched polymers. Green: Atoms counted as 
in-plane atoms, NInPlane, for the predictor θ presented in this work. Red: Atoms countable as intra-
band atoms, NInBande, for the predictor η presented in [24]. Blue: For molecules in which all atoms lie 
in one plane, the aspect ratio (ar) serves as robust predictor. 

However, this simple prediction parameter, η, is not well defined for larger mole-
cules with multiple potential bands. For example, in molecules such as Lumogen F Red 
305, it is not as straightforward to identify the dominating band, even though η still pre-
dicts the low alignability reasonability well, regardless in which structural the dominating 
band is identified (e.g., Figure 2 shows two possibilities of red band assignments in Lumo-
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Figure 2. Exemplary structures of molecules denoted with atoms counted for different predictors
for the experimentally observed alignability, ∆I‖/I⊥, in stretched polymers. Green: Atoms counted
as in-plane atoms, NInPlane, for the predictor θ presented in this work. Red: Atoms countable as
intra-band atoms, NInBande, for the predictor η presented in [24]. Blue: For molecules in which all
atoms lie in one plane, the aspect ratio (ar) serves as robust predictor.

However, this simple prediction parameter, η, is not well defined for larger molecules
with multiple potential bands. For example, in molecules such as Lumogen F Red 305, it is
not as straightforward to identify the dominating band, even though η still predicts the
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low alignability reasonability well, regardless in which structural the dominating band is
identified (e.g., Figure 2 shows two possibilities of red band assignments in Lumogen F
Red 305).

In order to provide a more precise definition for a prediction parameter also for larger
molecules consisting, for example, of more extended π-systems we refined the prediction
parameter in the following way. First, we consistently did a geometry optimization for all
molecules investigated. Then, all atoms were counted in this optimized geometry that were
within the molecular plane of these molecules, NInPlane, rather than just those in one band.
All other atoms were counted as NOutOfPlane. Figure 2 (green) illustrates this count for a
couple of molecules. Hydrogen atoms were not included, as they play only a minor steric
role but do often occur more dominantly in out of plane groups. This refined parameter

θ = NInPlane/NOutOfPlane (2)

provides similarly well estimates for the alignability as our previous parameter η, (compare
green θ values in Figure 3 with experimentally observed alignabilities ∆I‖/I⊥ in black) but
is unambiguous for more planar molecular structures.
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Figure 3. Correlation between the experimentally alignability (black curve, ∆I‖/I⊥) and the alignabil-
ity prediction parameter θ (green curve, Equation (2)) and the aspect ratio (blue curve, Equation (3))
as predictor for entirely planar molecules according to molecular geometry optimization calculations.

In Lumogen F Red 305, for example, the total number of atoms in the molecule is
82 without hydrogens. There are 36 atoms inside a plane and 46 outside, which results
in θ = 0.8 (Figure 2), and corresponds well with the experimental observation of little
alignability. Another important example is Lumogen F Yellow 083. This is also a molecule
with a larger π-system that does not easily allow to identify the largest rigid band. Indeed,
the rigid-band bases parameter η = 0.5 does not predict any alignment. However, the new
parameter presented here is precisely defined also for such molecules and predicts with a
value of θ = 2.1 very well the experimentally observed alignability of ∆I‖/I⊥ ~ 2.2.
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In cases, however, in which all atoms are in plane according to geometry optimization,
NOutOfPlane becomes zero and Equation (2) is not defined anymore. Important examples are
rylenes, such as perylene, terrylene, and quaterrylene (structures are shown in Figure 4).
Still, better alignment was observed experimentally for structures that resemble rigid band
like structures, similar as our previous empirical observation that led to the band-based
prediction parameter η, (Equation (1)). To account for this observation, we considered the
aspect ratio for such completely planar molecules that do not contain any out-of-plane
atoms, NOutOfPlane = 0. To do so, the rigid planar parts of the molecules were first simplified
as simple geometric shapes (e.g., benzene ≡ hexagon) with all bonds assumed to be of
approximately equal length. With this simplification, the length of the long and short axis
of the rigid, planar part of the molecules was then computed in units of the length of one
bond, a. Figure 5 illustrates this exemplarily for perylene. Due to geometric consideration
the aspect ratio, ar, is in this case

ar = llongaxis/lshortaxis = 5a/(4a × cos(30◦)) = 1.44 (3)Polymers 2022, 14, x FOR PEER REVIEW 9 of 21 
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Figure 4. Structures of rylenes and rylene derivates exemplary for planar molecular structures
that either do or do not contain any out-of-plane atoms. When there was no out-of-plane atom
(blue structures) the aspect ratio (Equation (3)) is a good predictor for the experimentally observed
alignabilities, ∆I‖/I⊥. Otherwise, the θ–parameter (Equation (2)), that is determined from the ratio of
in-plane atom (green) number over the number of out-of-plane atoms (black), is a good predictor.
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Figure 5. In planar molecules that do not contain any out-of-plane atoms the aspect ratio is a good
predictor for the alignability in stretched polymers. The figures show exemplarily how the aspect
ratio can be determined from the molecular structure of perylene. For details see text.

A comparison of the aspect ratio-based parameter computed for these molecules (blue
in Figure 3) demonstrates also a high predictive power for the alignability of such molecules
in polymers (black curve in Figure 3).

The general prediction scheme for the alignability of molecules in polymers is il-
lustrated in Figure 6. First a simple geometry optimization is performed to identify all
atoms, expect hydrogens, that are either within the molecules plane, NInPlane, or outside
the molecular plan, NOutOfPlane. If NOutOfPlane 6= 0, the alignability can be predicted by the
ratio defined in Equation (2) (green data in Figure 3). If NOutOfPlane = 0, the alignability can
be predicted by the aspect ratio of the plane defined in Equation (3) (Figure 2 and blue data
in Figure 3). These predictions correspond very well with the experimentally observed
alignabilities, ∆I‖/I⊥ (black data in Figure 3).
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Figure 6. The diagram shows how to estimate the alignability of a molecules transition dipole
moment in stretched polymers (PVA) with either the predictor parameter θ (Equation (2)) or the
aspect ratio for case of entirely planar molecules (Equation (3)).

An experimental observation that has so far not been considered in the proposed
prediction parameters is the influence of chemical polarization on the alignability. An
interesting comparison is that of the molecules PCTDA, PDI and terrylene that all have
similar spatial dimensions but are decreasingly polar (structures are shown in Figure 4).
All molecules show an alignment but it is noticeable that the ∆I‖/I⊥ value decreases with
greater polarity. The value of ∆I‖/I⊥ for PCTDA is only half as high as that for terrylene.
We suspect that the polar molecules are wedged between polymer chains due to hydrogen
bonds, while the non-polar molecules are well placed between the chains using the weaker
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Van der Waals forces. Therefore, when using the aspect ratio to predict alignability, it must
be considered that the polarity has an additional influence.

3.2. A New Light-Harvesting Solar Concentrator for the AlGaAs Layer of
High-Efficiency Photovoltaics

So far, high efficiency light-harvesting materials based on the scheme shown in Figure 1
have only been demonstrated for the blue AlGaInP layer of current high efficiency photo-
voltaics. High efficiency light-harvesting materials for the next, AlGaAs layer, of such high
efficiency photovoltaics have not been reported so far, partly due to the above-described
difficulties in the ability of predicting the alignability of larger light-harvesting donors
and light-redirecting acceptors, that shall either stay randomly oriented or align in that
same material during stretching. In order to build a FunDiLight-LSC for the second band
gap of the currently best solar cell by Geisz et al. now a suitable donor or acceptor can be
taken from Figure 3 [3]. Lumogen F Red 305 is ideal as a donor. No alignability (θ = 0.8) is
predicted which is also confirmed experimentally (∆I‖/I⊥~1.3). In addition, the spectral
requirements fit (Figure 7) and a high fluorescence quantum yield of almost 100% suggests
a very good energy transfer [25].
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Figure 7. Absorption and emission spectra of Oxazine 170 (green) and Lumogen F Red 305 (blue),
respectively. The fluorescence spectrum of Oxazine 170 (green, filled) fits perfectly the EQE spectrum
and thus band gap of AlGaAs cells (black) (Data from [3]). The fluorescence Lumogen F Red 305
(filled in blue) overlaps perfectly with the absorption spectrum of Oxazine 170 (green).

In order to find a suitable acceptor, the steric alignment requirements for the molecule
must be met in addition to spectral requirements for effective energy transfer and photo-
voltaics bandgap match, as well as highest possible fluorescence quantum yields. These
requirements are met, among others, by the squaraine dye DEAH and the dye Oxazine 170.
These two are predicted to be alignable by θ-parameters of θ = 2.75 (DEAH) and θ = 2.3 (Ox-
azine 170), and is confirmed by the experimentally measurement alignability. Even though
squaraine dye has a better fluorescence quantum yield of 86% compared to the Oxazine
with 63% in solution, it photodegraded very quickly. Therefore, Oxazine 170 was selected
as the acceptor. In addition, it is also observed very often that the fluorescence quantum
yields in solid environments, such as polymers, are significantly larger than in aqueous
solution. To generate a high-efficiency light harvesting system with Lumogen F Red 305 ®

and Oxazine 170, we first calculated optimized donor/acceptor ratios as well as concentra-
tions using our previously published computational ray tracing tool [26] and improved the
overall quantum efficiencies experimentally, thereafter. The following characterization of
the systems performance was similarly completed as reported previously [27,28].

First, the angle distribution of aligned Oxazine 170 was examined in a single molecule
3D orientation microscope. In such a microscope, the stretched or unstretched polymer
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containing Oxazine 170 is illuminated from three different directions (Figure 8a) while
the polarization of the light is rotated. Since light is best absorbed with a polarization
vector parallel to the transition dipole moment of the fluorophore, differently oriented
dyes are excited at different times. Therefore, the fluorescence traces of the single dyes
also show modulation. The 3D orientation of each individual Oxazine 170 molecule can
then be determined from these modulations observed from the three different directions.
Figure 8b,c shows a typical microscope image from individual Oxazine 170 molecules in
PVA. The angular distribution of the flat azimuth angles is shown in polar plot histograms
in Figure 8d,e.
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Figure 8. In 3D single molecule orientation microscopy, the sample is illuminated from three dif-
ferent directions with rotating polarization (a). The analysis of the observed fluorescence intensity
modulations allows to determine the 3D orientation of single molecules in the unstretched (b) and
stretched polymer (c). Polar plots of histograms of the azimuth angles show a clear alignment along
the polymer stretching direction (e) that is not present in the unstretched control (d).

Although a very random distribution can be seen in unstretched polymers in Figure 8d,
in Figure 8e there is a clear majority of molecules aligned in the stretched polymer.

Figure 9 shows a more detailed representation of all single molecules investigated
along with linear presentations of the azimuth and polar angle histograms. After stretching,
more than half of all molecules lie flat in the plane within 10◦. In addition, over half of the
molecules are approximately 20◦ around the direction of stretching. Gaussian fits show a
half-width of the azimuth angle distribution of 14.5◦ and a half-width of 10.8◦ for the polar
angles (Figure 9d).
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Based on the microscopic data, the orientation of the acceptor could be reliably verified.
This is essential for a precise FunDiLight LSC. However, efficient and fast energy transfer is
at least as important for overall high light-re-directioning quantum efficiencies.

Therefore, pump-probe measurements were completed for the donor–acceptor system
to investigate the dynamics of energy migration and dipole reorientation in more detail.

First, a spectrum with different probe wavelengths was recorded after pumping the
donor at its absorption maximum, λexc = 590 nm. The highest signal was obtained at a
wavelength of λdet = 650 nm (Figure 10a,b), corresponding well with the acceptor absorption
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and thus arising very likely from acceptor ground state bleaching after receiving energy
from the donors. During the temporal evolution, a decrease in the signal can be seen
at bluer wavelengths, which is likely indicative of intramolecular vibrational relaxation
processes in the acceptor after receiving the energy from the donors in higher vibrational
acceptor states. At red wavelengths, an increase can be seen after this first quick step. (This
suggests that donors continue to deliver energy to acceptors).
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Figure 10. Pump-probe data of the unstretched donor–acceptor polymer samples observed after
pumping the donors at λexc = 590 nm and detecting the acceptor kinetics at various probe wavelengths
(a) as well as the transient pump-probe-spectra converted therefrom (b).

Kinetic signals where either fitted by mono- or biexponential rise terms, depending
on which better described the observed signals. Since the donor molecules are at different
distances from each other and from the acceptor, different time scales, and kinetics are
expected. Before the donors close to the acceptor molecules transfer their energy, excitation
energy migration and transition dipole reorientation occurs in the larger donor pools.
To dissect these processes, polarization-dependent pump-probe measurements were also
carried out (Figure 11a). Four different polarizations were measured, with combinations of
pump and probe polarizations parallel or perpendicular to the direction of stretching of
the polymers. The rise time of these curves reflect direct energy transfer from the (closest)
donors to the acceptors and is with about 6 ps is comparable to that what one expects from
Förster Theory for a single donor to acceptor transfer at the closest distance of about 2.6 nm
between the pigments. With donor pool pump polarization perpendicular to the acceptor
probe polarization (and stretching direction), additional kinetic rising components were
observed (green in Figure 11a) that are not visible when directly pumping and probing
parallel to the stretching direction (violet in Figure 11a). This is due to the additional time
necessary to rotate the initial perpendicular transition dipole orientations into transition
dipole orientations parallel to the acceptors during energy migration from the donors
to the acceptors. A difference spectrum can be formed from these two measurements
and a biexponential function can be fitted to this difference spectrum (Figure 11b). The
biexponential rise term gives a time constant for the intra donor-pool energy migration and
dipole moment reorientation on the order of ~27 ps, as well as a decay time constant of
approximately 400 ps, after which the energy transfer from the donor-pool to the acceptors
is completed. Overall, the times are all well below the ns lifetime of the donor (7.9 ns [29]),
which is why an almost perfect energy transfer efficiency c with a quantum efficiency close
to unity can be assumed. In addition, the significantly lower amplitude with perpendicular
polarization of the pump and probe beam to the stretching direction compared to corre-
sponding parallel pump and probe beam polarization data once more confirm the acceptor
alignment parallel to the polymer stretching directions (Figure 11a red and violet curves).
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Figure 11. Polarization-dependent pump-probe measurements of the stretched sample with various
pump and probe polarizations parallel or perpendicular to the stretching direction (a). The time
constants for the energy migration and dipole-reorientation dynamics within the donor pool and the
subsequent transfer to the acceptors can be determined through the biexponential fit of the difference
spectrum of the violet and green curve (a) from the stretched sample (b). For details of this analysis
see text and [24].

4. Discussion

With the present study, structural factors that lead to an alignability of molecules in
polymers—at least in PVA—become clearer. Key factors are obviously the size of rigid
planar parts in a molecules structure, as well as the aspect ratio of this plane and the size and
number of structural groups that point outside this plane and/or that are flexible. Based
on these observations, we provide a refined prediction parameter, θ, and scheme (Figure 6)
that is based on the ratio in the numbers of in-plane and out-of-plane atoms observed in a
simple geometry optimization calculation (Equation (2), green in Figures 2 and 4)) and the
aspect ratio for planar molecules (Equation (3), blue in Figures 2 and 4), that do not contain
any out-of-plan atoms at all. These parameters and the scheme predict the alignability
(e.g., for light re-directing acceptor molecules, red in Figure 1) or non-alignability (e.g.,
for randomly oriented light harvesting donor molecules in the same material, green in
Figure 1) at least as good as our previously reported parameter, but allows to better predict
the alignability of larger molecules (Figure 3). In addition, we found an indication that
the alignability decreases with greater polarity. We suspect that this is due to increasing
distorting interactions with polar groups of PVA during the stretching. However, this
observation is not included in our alignability estimation parameters yet, as it needs more
experimental verification.

Obviously, the alignability is a largely steric phenomenon. We find that small hydrogen
atoms can be neglected for a good alignment prediction. We found experimental alignment
when the θ-parameter was greater than 1.5 or in other words when 1.5 times more atoms
are in the plane than outside of it. We suspect that the polymer chains start to orient in one
preferred direction when they are mechanically stretched and that the molecules between
the ordered chains are aligned by shear forces (Figure 12a). Molecules with larger numbers
of rigid or non-rigid groups and atoms pointing outside this plane are more likely to wedge
between the chains, hindering alignment in that same direction. We also suspect that this
more likely, when more heteroatoms are present that make the molecules more polar. Since
the polymer PVA is already polar itself, the wedging of the molecules could be increased
during the polymer stretching.

In the case of completely flat molecules, the aspect ratio is also important. We suspect
that while all flat molecules align themselves, a rotation around the transverse axis of the
molecule allows also for transition emission dipole moments perpendicular to the stretching
direction, and, therefore, no alignment of the light emission is observed. With elongated
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molecules of higher aspect ratios, such rotation becomes less likely or in other words the
molecules dipole moment does align in just one direction parallel to the stretching direction.
We found that emission dipole moment alignment can be typically found when the aspect
ratio was approximately higher than 1.5.

With these insights we were able to seek suitable molecules that act as randomly
oriented light-harvesting donor pools (green in Figure 1) and light redirecting acceptor
molecules (red in Figure 1) also for other spectral ranges than our previously published
system for the blue-green AlGaInP spectral range of high-efficiency photovoltaic [23,24].
Before the present study, this was difficult as the necessary alignment or non-alignment of
larger molecules in the very same polymer and stretching procedure could not be predicted
as easily with our previous prediction parameter, η, that rather relied on the size of rigid
band size structure in smaller pigment molecules.

For the more reddish spectral range necessary for the AlGaAs layer of high efficiency
photovoltaics, the relatively flat and long dye Oxazine 170 was found as a suitable example
of a fluorophore that aligns very well in polymers when mechanically stretched. It has
a prediction parameter of θ = 2.3 and indeed showed an experimental alignability of
∆I‖/I⊥ ~ 1.9. Together with the bulky Lumogen F Red 305, that stays with θ = 0.8 and
∆I‖/I⊥ ~ 1.3 randomly oriented in the very same polymer and stretching procedure, it
forms a FunDiLight system as illustrated in Figure 1 for the spectral range of the AlGaAs
layer. The Donor Lumogen F Red 305 collects exactly the spectral range of the light not
covered by the previously published blue layer, and can pass it on to the acceptor Oxazine
170 with high yield, due to perfect spectral overlap. The aligned acceptor can purposefully
redirect the energy and the emission of Oxazine 170 fits perfectly with the AlGaAs band gap
of high efficiency photovoltaics. Microscopic 3D single molecule orientation measurements
confirmed that the light re-directioning acceptors in this system are very well aligned, with
85% of the dyes within 25◦ of the stretching direction.

The highly efficient light-harvesting donor to light-redirecting acceptor energy transfer
is confirmed by efficient, ultrafast energy transfer unveiled by polarized pump-probe
spectroscopy (Figures 10 and 11). These experiments also provided valuable insights into
the donor pool energy migration and emission dipole moment reorientation on timescales
on the order of approximately 6–400 ps. The excitation energy is transferred from the
primarily excited light harvesting donors to the donor-pool on a timescale of about 27 ps.
From there, the energy is gradually passed on to the acceptors. The final ultrafast one-step
donor to acceptor energy transfer step from the nearest donor in the light-harvesting pool
to the light-redirecting acceptors time occurs in about 6 ps. Even if the transition dipole
moments of the excited donors are very different for the light-redirecting acceptors, they
still transferred efficiently all excitons after about 400 ps.

5. Conclusions and Perspective

In summary, these results confirm that about 99.9% of light in the 420–660 nm spectral
range of the light-harvesting donor is collected in a single foil of 50 µm thickness, at least
98% of these excitations is transferred to the light-redirecting acceptors, and that the accep-
tors emit about 80% of the light in directions suitable for effective total internal reflection
waveguiding to, for example, high-efficiency photovoltaics. The percentage of absorbed
light was inferred from the absorption spectrum of a single foil in the spectral range of
420–660 nm (Figure 7), the efficiency of the energy transfer from a direct comparison of the
donor fluorescence intensity in the presence and the absence of acceptors [30], as well as
the observed ultrafast energy transfer on timescales from 6 to 400 ps (Figures 10 and 11) in
comparison to the donor lifetime (7.9 ns [29]) and the emission angle range from the 3D
orientation single molecule experiments (Figures 8 and 9) in a similar manner as described
in Pieper et al. and Willich, Wegener et al. [23,24]. Therefore, the overall efficiency of the
new funneling light-harvesting system for the reddish AlGaAs layer of high-efficiency
photovoltaics is as similarly high as our previously reported systems for the blue-green
AlGaInP layer [23,24]. Together with the previously proposed system for the blue-green
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spectral range, these two layers already cover about 75% of the total energy of the solar
light (denoted by grey color in Figure 12c).

For the future development we envision two layers of our high-efficiency light-
harvesting systems together with the corresponding two layers of high efficiency pho-
tovoltaics. This principle is shown in Figure 12b. One of our future aims is to realize such a
real word system including all components that are necessary for a high efficiency light
harvesting together with high efficiency photovoltaics and a concentration factor (input
surface/output surface, see Figure 1) as large as possible and the very little loss mechanisms
provided by our FunDiLight approach.Polymers 2022, 14, x FOR PEER REVIEW 19 of 21 
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Figure 12. Polymer chains (beige) are likely ordered by the stretching procedure. We suspect that
shear forces (small black arrows) can align the dyes (red arrows) between the polymer chains when
they have the corresponding structural requirements (see Figures 2–6) (a). In the envisioned two-layer
light-harvesting and energy conversion system light in the wavelength range between 275 and 500 nm
is first collected in the upper layer by the randomly oriented Pyranine donor molecules (blue) and
transferred to the Rhodamine 123 acceptors (green) aligned parallel to the AlGaInP photovoltaics
(grey). Wavelengths longer than 500 nm pass through the first layer and are then absorbed by the
Lumogen F Red 305 donors (yellow) and transferred on to the aligned Oxazine 170 acceptors (red).
These emit correspondingly in the direction on the AlGaAs PV cell material. (b) The part of the solar
spectrum ([31,32], Data from [32]) that are entirely harvested by the Pyranine and Rhodamine 123
molecules (green absorption spectrum) and Lumogen F Red 305 and Oxazine 170 molecules (red
absorption spectrum) of such a two-layer system is marked by grey color and corresponds already to
about 75% of the total solar irradiation energy (c).
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