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Abstract: Luminescent solar concentrators (LSCs) provide a transformative approach to integrat-
ing photovoltaics into a built environment. In this paper, we report thin-film LSCs composed of
intramolecular charge transfer fluorophore (DACT-II) and discuss the effect of two polymers, poly-
methyl methacrylate (PMMA), and poly (benzyl methacrylate) (PBzMA) on the performance of
large-area LSCs. As observed experimentally, DACT-II with the charge-donating diphenylaminocar-
bazole and charge-accepting triphenyltriazine moieties shows a large Stokes shift and limited re-
absorption losses in both polymers. Our results show that thin-film LSC (10 × 10 × 0.3 cm3) with
optimized concentration (0.9 wt%) of DACT-II in PBzMA gives better performance than that in the
PMMA matrix. In particular, optical conversion efficiency (ηopt) and power-conversion efficiency
(ηPCE) of DACT-II/PBzMA LSC are 2.32% and 0.33%, respectively, almost 1.2 times higher than for
DACT-II/PMMA LSC.

Keywords: luminescent solar concentrator; polymer matrix; organic fluorophore; intramolecular
charge transfer; light harvesting

1. Introduction

Due to rapid urbanization, a considerable increase in global energy consumption has
been observed over the past several decades. Currently, buildings utilize around 30% of
energy worldwide, due to cooling, heating, and artificial-lighting loads [1,2]. To meet
this huge energy demand, substantial attention has been paid to clean and renewable
energy technologies, especially grid-free building-integrated photovoltaics (BIPVs) [3].
Among many BIPVs, luminescent solar concentrators (LSCs) offer a cost-effective solution
to harness solar energy, while warranting their compatibility with the existing and new
infrastructures [4]. Typically, LSCs are fabricated in two simple architectures, namely bulk
and thin-film LSC. In the case of bulk LSC, light-emissive fluorophores are embedded in
the optically transparent slab of polymer, while a thin-film LSC consists of fluorophores
mixed with the polymer matrix to form a thin film on the haze-free glass. In both cases,
fluorophores absorb incident sunlight and re-emit it at longer wavelengths. The re-emitted
photons are trapped within the polymer slab or glass substrate due to the total internal
reflection (TIR) process and are directed to its edges, where they are transformed into
electricity by attached PV cells (Figure 1) [5,6]. Recently, it has been suggested that LSCs’
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application is not just limited to BIPVs, but they can be applied to various other platforms,
such as greenhouses [7], noise barriers [8], indoor decorative elements [9,10], medical
devices [7,11], indoor light-harvesting glass [12], and sunroofs of vehicles [13].
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Figure 1. (a) Schematic representation of thin-film LSC, (b) Chemical structure of DACT-II em-
ployed in our study. 
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Figure 1. (a) Schematic representation of thin-film LSC. (b) Chemical structure of DACT-II employed
in our study.

Dating back to the 1970s, LSCs were first introduced as an inexpensive alternative to
traditional photovoltaics [14]. However, the recent LSCs still offer stability issues [15,16]
and reduced efficiency mainly due to re-absorption losses that occur due to the small
Stokes shift of fluorophores [17,18], limited fluorophore–polymer compatibility [19], and
low photoluminescent quantum yield (PLQY) of fluorophores [20]. Major research ef-
forts devoted to LSCs include (1) the use of suitable fluorophores, such as organic dyes,
e.g., coumarins [21], perylenes [22], aggregation induce emissive molecules [23–25], π-
conjugated polymers [26,27], rare earth complexes [28], and semiconducting quantum
dots QDs (core/shell, carbon, and silicon) [29–32]; (2) different designs, e.g., plasmonic
LSCs [33,34], fibers structures [35,36], and multi-layer LSCs [36–38]; and (3) identifying the
appropriate host polymer. The most reported polymer for LSCs is polymethyl methacrylate
(PMMA), while other examples include crosslinked fluoro-polymers [39], polycyclic hexyl
methacrylate [40], polysiloxanes [41], L-poly(lactic acid) [42], fluorescent proteins [43],
cellulose crystals [44], and unsaturated polyesters [45].

In recent work by our group [46,47], bulk PMMA LSCs were fabricated by utiliz-
ing thermally activated delayed fluorescence (TADF) dye, 1,2,3,5-tetrakis(carbazol-9-yl)-
4,6-dicyanobenzene (4CzIPN) [48]. Moreover, 4CzIPN shows the intramolecular charge
transfer (ICT) features between the carbazole and dicyanobenzene moieties that lead to a
drastic increase in the Stokes shift. Reduced re-absorption losses, high photostability due
to strong steric hindrance, and high PLQY of 4CzIPN make it an excellent candidate for
the large-area LSCs.

In this study, we investigated the effect of the host polymer matrix on the performance
of LSC incorporating intramolecular charge transfer fluorophore. We fabricated large-area
thin-film LSCs (10 × 10 × 0.3 cm3) based on another TADF dye, 9-[4-(4,6-diphenyl-1,3,5-
triazin-2-yl)phenyl]-N,N,N′,N′-tetraphenyl-9H-carbazole-3,6-diamine, denoted as DACT-II
(Figure 1b) [49]. DACT-II consists of electron donor diphenylaminocarbazole and electron-
acceptor triphenyltriazine moieties and exhibits ICT characteristics. In particular, PMMA
and poly (benzyl methacrylate) (PBzMA) were investigated as host polymer matrices
for DACT-II-based thin-film LSCs. Besides synthesis of DACT-II, we report the optical
properties and photovoltaic performance of DACT-II-based thin-film LSCs employing
PMMA and PBzMA matrices. Our results suggest that the DACT-II-based thin-film LSC
with the PBzMA matrix shows an optical efficiency of 2.32%, which is 1.2 times higher than
that with the PMMA matrix.
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2. Materials and Methods
2.1. Materials

For the synthesis of DACT-II, all reagents were acquired from Tokyo Chemical Industry
(TCI) and Sigma-Aldrich. For the fabrication of LSCs, PMMA and PBzMA were purchased
from Sigma-Aldrich.

2.2. Synthesis
2.2.1. Synthesis of 3,6-dibromo-9-(4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-9H-carbazole (1)

First, 2-(4-bromophenyl)-4,6-diphenyl-1,3,5-triazine (0.4 g, 1.0 mmol), 3,6-dibromo-9H-
carbazole (0.33 g, 1.0 mmol), bis(tri-tert-butylphosphine)palladium(0) (0.026 g, 0.05 mmol)
and sodium tert-butoxide (0.25 g, 2.6 mmol) were dissolved in anhydrous toluene (13 mL)
under a nitrogen atmosphere. The mixture was refluxed for 4 h. After cooling down
to room temperature, the solution was poured into chloroform and distilled water for
extraction. The chloroform layer was washed with distilled water several times and dried
over magnesium sulfate. The crude product was filtered by using Celite 545 and purified
via column chromatography on silica gel (eluent:dichloromethane/hexane, 1:4, v/v). The
product was dried in a vacuum oven to give a white powder (yield = 0.10 g, 10%). 1 H NMR
(500 MHz, CDCl3): δ 9.04 (d, J = 8.5 Hz, 2 H), 8.83 (d, J = 6.5 Hz, 4 H), 8.24 (s, J = 2.0 Hz,
2 H), 7.76 (d, J = 8.5 Hz, 2 H), 7.67–7.55 (m, 6 H), 7.57 (dd, J = 9.0 Hz, 2.0 Hz, 2 H), 7.41 (d,
J = 9.0 Hz, 2 H).

2.2.2. Synthesis of DACT-II

First, (0.10 g, 0.16 mmol), diphenylamine (0.06 g, 0.35 mmol), tris(dibenzylideneacetone)-
dipalladium(0)-chloroform adduct (0.004 g, 0.004 mmol), 2-dicyclohexylphosphino-2′,4′,6′-
triisopropyl-biphenyl (0.01 g, 0.016 mmol) and sodium tert-butoxide (0.037 g, 0.384 mmol)
were dissolved in anhydrous toluene (5 mL) under a nitrogen atmosphere. The mixture
was refluxed for 12 h. After cooling down to room temperature, the solution was poured
into chloroform and distilled water for extraction. The chloroform layer was washed
with distilled water several times and dried over magnesium sulfate. The crude product
was filtered by using Celite 545 and purified via column chromatography on silica gel
(eluent:dichloromethane/hexane, 1:2.5, v/v). The product was dried in a vacuum oven
to give a yellow powder (yield = 0.09 g, 69%). 1 H NMR (500 MHz, DMSO-d6): δ 9.03 (d,
J = 8.5 Hz, 2 H), 8.80 (d, J = 7.0 Hz, 4 H), 8.05 (s, J = 2.5 Hz, 2 H), 8.00 (d, J = 8.5 Hz, 2 H),
7.76 (t, J = 7.0 Hz, 2 H), 7.71 (t, J = 7.5 Hz, 4 H), 7.60 (d, J = 9.0 Hz, 2 H), 7.27 (t, J = 8.5 Hz,
10 H), 7.00 (d, J = 7.5 Hz, 8 H), 6.96 (t, J = 7.5 Hz, 4 H).

2.3. Fabrication of Thin-Film LSCs

To fabricate DACT-II-based thin-film LSCs with PMMA matrix, 10 wt% solutions of
PMMA in chloroform were prepared. The solution was then blended with various concen-
trations of as-synthesized DACT-II (0.1–1.3 wt%). After proper mixing of final solutions,
the doctor-blade coating technique was used to make thin film (~60 µm film thickness)
on transparent glass substrates of different sizes. Chloroform was slowly evaporated by
keeping the sample under room conditions. The same procedure was applied to fabricate
DACT-II-based thin-film LSCs with PBzMA matrix.

2.4. Measurements

UV–visible spectrophotometer (Perkin Elmer Lambda 35) and fluorescence spectropho-
tometer (JASCO, FP-8600) were used to obtain absorbance and emission of the samples. To
obtain the spectra of edge emitted photons, an integrating sphere connected to a spectrom-
eter (Avantes, ULS2048) was employed. For PV measurements, crystalline silicon (c-Si) PV
cells were purchased locally. Highly transparent adhesive (United Adhesives, OE 1582)
was used to attach the PV cells with all edges of the fabricated LSCs (10 × 10 × 0.3 cm3).
Current–voltage measurements were obtained by illuminating the surface of LSCs with a
solar simulator (Mc-Science) having a Xenon arc lamp of 160 W equipped with filters to
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approximate AM 1.5 G spectrum. The irradiance of the illumination source was calibrated
before and found to be 100 mW cm−2.

3. Results and Discussion

The synthesis of DACT-II was performed by using a two-step approach (Scheme 1). In de-
tail, Compound 1 was synthesized by 3,6-dibromo-9H-carbazole, bis(tri-tert-butylphosphine)
palladium(0) and sodium tert-butoxide under inert environment. Then, diphenylamine,
tris(dibenzylideneacetone)dipalladium (0)-chloroform adduct, 2-dicyclohexylphosphino-
2′,4′,6′-triisopropyl-biphenyl, and sodium tert-butoxide were reacted in anhydrous toluene
under a nitrogen atmosphere, delivering DACT-II in 69% yield after crystallization. The
obtained DACT-II was consisted of chemically bonded diphenylaminocarbazole (charge
donor) and triphenyltriazine (charge acceptor) moieties.
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Scheme 1. Synthesis of DACT-II.

The optical properties of synthesized DACT-II were investigated in PMMA and
PBzMA matrices. PBzMA is highly transparent and amorphous that makes it an excellent
alternative to the commonly employed PMMA matrix in LSCs. Normalized absorbance
and emission spectra of DACT-II in PMMA and PBzMA are displayed in Figure 2. The
absorbance range covered the entire ultraviolet (UV) and near UV region, i.e., from 300 to
450 nm. As observed, absorbance is low in the 350–450 nm range, however, this issue can
be solved by using a higher concentration of DACT-II in thin-film LSCs. As evident from
Figure 2, the absorbance of DACT-II was nearly the same in both polymer matrices. DACT-
II exhibited a broad emission with the peak values at 490 and 507 nm in PBzMA and PMMA
films, respectively. The expected blue shift in the case of PBzMA is due to the modest
polarity of the lateral benzyl group compared to the methyl ester substitution in PMMA.
Stokes shift is an important factor in designing an efficient LSC device. Figure 2 also
confirms that DACT-II exhibited a large Stokes shift, i.e., less overlap between absorbance
and emission spectra in both polymers. Such a large Stokes shift limits the re-absorption
losses, even at higher concentrations of DACT-II; thus, it helps improve the LSC efficiency.

To obtain the optimum concentration of DACT-II in PMMA and PBzMA, thin-film
LSCs (5 × 2.5 × 0.1 cm3) employing different concentrations, ranging from 0.1 to 1.3 wt%,
were fabricated as explained in the experimental section. In Figure 3a, the effect of DACT-
II concentration in PMMA film on the emission intensity is reported. For 0.1–0.9 wt%
DACT-II loading, a gradual increase in the emission intensity was detected at the excitation
wavelength of 350 nm. However, a further rise in the concentration caused a decrease in
emission which could be associated with the formation of the aggregate. These aggregates
offer sites for non-radiative relaxations of excited state electrons, leading to emission reduc-
tion [50]. The limited solubility of DCAT-II in the PMMA matrix is another factor that leads
to lowered emission at higher concentrations of DACT-II. Moreover, these spectra were also
characterized by a negligible red shift, suggesting modest re-absorption losses. Identical to
what was observed for DACT-II/PMMA films, emission intensity (for DACT-II/PBzMA
films) improved linearly with DACT-II concentrations up to 0.9 wt% (Figure 3b). Beyond
0.9 wt%, a decrease in the DACT-II emission, along with the progressive red shift, was
observed. The comparison of DACT-II in both polymer matrices shows that emission inten-
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sity remained higher in PBzMA than PMMA for all the concentrations, making PBzMA a
superior alternative to the commonly used PMMA matrix. Our experimental investigations
can be justified by the fact that the reduced polarity of PBzMA helps create not only a
better dispersion of the DACT-II but also improves the radiative decay channels. To deeply
understand the emission mechanism of the DACT-II in PMMA and PBzMA matrices,
time-resolved photoluminescent measurements were performed. A single-exponential
decay model was employed to fit the photoluminescence decay curve and calculate the
excited-state lifetimes. The emission of DACT-II in PMMA at 507 nm decayed with an
average excited-state lifetime of 8.6 ns. On the other hand, the excited state lifetime of
DACT-II in PBzMA at 490 nm was 9.6 ns (Figure 3c). The decreased excited-state lifetime in
the case of the PMMA matrix indicates the possible formation of alternative non-radiative
decay channels.
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To investigate the effect of LSC size on the edge emission, we prepared the square-
dimensioned thin-film LSCs (DCAT-II concentration 0.9 wt%) with different lengths, and
edge emitted photons were obtained by using the integrating sphere method. Figure 4a
shows the edge emitted photons spectra of different sized DACT-II/PMMA-film LSCs. The
number of edges emitted photons increased linearly with the lengths, which is obvious
because, when the size of LSC increases, the total number of incident photons will increase.
The same trend was observed in the case of DACT-II based LSC with PBzMA matrix



Polymers 2021, 13, 3770 6 of 10

(Figure 4b). Notably, for all the lengths, the total number of photons emitted by the edges
of DACT-II-based LSC with PBzMA matrix remained higher than that of the device with
PMMA matrix. This trend is consistent with the front-facing emission measurements
(Figure 3a,b). To our surprise, a red shift was observed when the size of the LSCs was
increased from 2.5 to 15 cm. Peak wavelengths of the edge emission spectra are also
presented in Figure 4c. For 2.5 cm length, the peak emission wavelength was 509 and
498 nm for LSCs with PMMA and PBzMA matrices, respectively. Meanwhile, the values
changed to 517 and 507 nm for 15 cm–long respective devices. Generally, increment in the
size of LSC is accompanied by the escape cone losses, reabsorption losses, and red-shifted
edge emissions. The same phenomena have been also noted for LSCs with various designs
and using other fluorophores [51,52].
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The potential of DACT-II-based thin-film LSCs as power-producing windows was de-
termined by obtaining optical-conversion efficiency (ηopt) and power-conversion efficiency
(ηPCE) of the large-area LSCs (dimension: 10 × 10 × 0.3 cm3) having 0.9 wt% of DACT-II
in PMMA and PBzMA matrices. Moreover, ηopt is described as the ratio of LSC edge
emitted photons to the total incident photons, while ηPCE is the ratio of the electrical output
to the solar power input. The formula of ηopt and ηPCE is given in Equations (1) and (2),
respectively.

ηopt =
ILSC × AEdges

IPV cell × ALSC
(1)

ηPCE =
ILSC ×VOC × FF

ALSC × FIN
(2)

where ILSC (mA) and IPV cell (mA) are short-circuit current obtained by LSC connected PV
cell and short-circuit current of bare PV cell(without LSCs attached). AEdges (cm2) and ALSC

(cm2) are the area of LSC edges where PV cells are attached and surface area of LSC. While
in Equation (2), VOC (V), FF, FIN (mWcm−2) are the open-circuit voltage, fill factor, and the
incident solar power density, respectively. It is important to note that PV cell was connected
to only one edge while other three edges were masked, and overall LSC was then corrected
by multi-plying the current density by 4. Current density–voltage (J–V) curves taken by
the DACT-II-based LSC with PMMA and PBzMA matrices are depicted in Figure 5, while
the values of other PV parameters and values of ηopt and ηPCE are listed in Table 1. It is
evident from the results that DACT-II-based LSC with PBzMA matrix outperformed and
gave the ηopt and ηPCE of 2.32 and 0.33%, respectively. These values are 1.2 times higher
than the LSC with the PMMA matrix.
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Table 1. Photovoltaic parameters of DACT-II-based LSC (10 × 10 × 0.3 cm3) with different poly-
mer matrices.

Samples Voc (V) Isc (mA) FF (%) ηopt (%) ηPCE (%)

DCAT-II/PMMA-based LSC 0.51 79.44 66.57 1.92 0.28
DCAT-II/PBzMA-based LSC 0.51 97.10 66.70 2.32 0.33

Additionally, an analytical model (Equation (3)) [53] was used to estimate the optical
efficiency (ηopt) of large-area LSCs (up to 10,000 cm2, for Length = 100 cm) utilizing DACT-II
in PMMA and PBzMA matrices.

ηopt = (1− R) ηabs . ηint (3)

where R denotes the reflection losses, which are approximately 4% in the case of polymers
with a refractive index of 1.5. Note that PMMA and PBzMA show same refractive index.
Moreover, ηabs and ηint are the absorption efficiency (Equation (4)) and internal quantum
efficiency (Equation (5)), respectively.

ηabs =

∫ 1100
280 Pin(λ)

[
1− e−α(λ)t

]
dλ∫ 1100

280 Pin(λ)dλ
(4)

ηint =

∫ ∞
0

ηQY ηtrap

1+βα(λ) t
D L(1−ηQY ηtrap )

IPL(λ)dλ∫ ∞
0 IPL(λ)dλ

(5)

In Equation (4), α is the absorption coefficient of DACT-II in polymeric films, t is the
thickness of the film and Pin is the incident photon flux. In Equation (5), ηQY is the PLQY
of DACT-II (49 and 56% in PMMA and PBzMA, respectively); ηtrap is a light-trapping
efficiency, which is around 75% for a given system; β is a numerical factor and is equal to
1.4 [37]; IPL is an emission intensity; and D and L represent the thickness and length of a
whole LSC device. Moreover, LSCs are assumed to be square such that the length of the
LSC is equal to the width. As shown in Figure 6, ηopt drops with the increasing length of
LSCs with PMMA and PBzMA matrices. In the case of DACT-II-based LSC with PMMA
matrix, the calculated ηopt was 2.25 and 1.85% for the length 2.5 and 100 cm, respectively.
When the PBzMA matrix was employed, ηopt soared to 2.64% for 2.5 cm and 2.05% for
the 100 cm long LSCs. The calculated ηopt was based on the emissions from all edges of
the LSC device as shown in the insert of Figure 6. A drop in ηopt is expected, since the
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re-emitted photons are more susceptible to optical losses at higher lengths of LSCs, as can
be seen in other studies [25,29]. Although the overall ηopt of our fabricated LSCs is low,
which is due to the low absorption range (300–450 nm), our results confirm that PBzMA
can be applied as a potential alternative to commonly employed PMMA matrix for most of
the organic fluorophores based LSCs.
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4. Conclusions

In summary, we demonstrated the effect of polymer matrices on the DACT-II-based
LSCs. First, we synthesized the DACT-II, a TADF dye with intramolecular charge transfer
characteristics, and blended it with PMMA and PBzMA to make large-area thin-film LSCs.
At the optimized concentration (0.9 wt%), DACT-II-based LSC with PBzMA matrix showed
2.32 and 0.33% of ηopt and ηPCE, respectively. Conversely, the ηopt and ηPCE of the device
with PMMA matrix were 1.92 and 0.28%, respectively. Better efficiencies in the case of
PBzMA are attributed to more efficient dispersion of the DACT-II in PBzMA, which makes
PBzMA a better choice for the fabrication of thin-film LSCs.
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