polymers-logo

Journal Browser

Journal Browser

Functional Polymeric Materials for Dental and Oral and Maxillofacial Surgery Applications

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Applications".

Deadline for manuscript submissions: 31 October 2025 | Viewed by 3833

Special Issue Editor


E-Mail Website
Guest Editor
Department of Dental Materials, Faculty of Dentistry of Pernambuco, University of Pernambuco, Recife 50100-130, PE, Brazil
Interests: resin composites; adhesive dentistry; biocompatibility; dental substrates; polymerization shrinkage

Special Issue Information

Dear Colleagues,

The application of polymeric materials in dentistry, in its most diverse specialties, has been an undeniable trend, ranging from the development of new restorative resin composites with controlled polymerization contraction and ultra-fast polymerization, adhesive systems, elastomeric materials for precision impressions, polymeric materials used in orthodontics, oral rehabilitation and oral and maxillofacial prostheses to the use of polymeric materials for internal prosthesis in the reconstruction of facial sequelae. The development and use of polymers in dentistry is an area of great promise.

By launching this Special Issue, we aim to bring together a collection of articles that present new techniques and evaluations of relevant properties of polymers used in the most diverse dental specialties. All original research papers and review articles related to this topic from leading groups around the world are welcome.

Prof. Dr. Marcos Antônio Japiassú Resende Montes
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • polymers in dentistry
  • resin composites
  • dental adhesives
  • polymeric impression materials
  • biocompatibility
  • acrylic resins

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

21 pages, 5194 KiB  
Article
Influence of Surface Treatment and Protracted Ageing on the Shear Bond Strength of Orthodontic Brackets to Two Digitally Fabricated (Milled and 3D-Printed) Polymethacrylate-Based Provisional Crowns
by Nisreen Nabiel Hassan, Khurshid Mattoo, Atheer Khawaji, Hanan Najmi, Almaha Sadeli, Ahid Amer Alshahrani, Abeer Ali Qahtani, Abdullah Hasan Alshehri, Mai Almarzouki and Mohammed E. Sayed
Polymers 2025, 17(5), 699; https://doi.org/10.3390/polym17050699 - 6 Mar 2025
Viewed by 576
Abstract
This study determined the influence of surface treatment and protracted ageing on the shear bond strength (SBS) of orthodontic brackets bonded to CADCAM (milled) and 3D-printed polymethylmethacrylate (PMMA) provisional crowns (PCs). Eighty disc-shaped specimens [forty milled (CopraTemp WhitePeaks) [group (Gp) M] and forty [...] Read more.
This study determined the influence of surface treatment and protracted ageing on the shear bond strength (SBS) of orthodontic brackets bonded to CADCAM (milled) and 3D-printed polymethylmethacrylate (PMMA) provisional crowns (PCs). Eighty disc-shaped specimens [forty milled (CopraTemp WhitePeaks) [group (Gp) M] and forty printed (Asiga DentaTooth) (Gp P)] were divided into eight subgroups (Gp) based on surface treatment [no treatment (control) (Gp MC and Gp PC), coarse diamond (Gp MCD and Gp PCD), fine diamond (Gp MFD, and GP PFD) and sandblast (Gp MSB and Gp PSB)]. Orthodontic brackets were bonded (Assure Plus, Transbond XT), thermocycled (2200 cycles), and tested for SBS and failure (Adhesive Remnant Index) (ARI). Statistical tests included analysis of variance (ANOVA); Kruskal–Wallis (ARI ranks); and post hoc (Tukey, Dunn, and Bonferroni) for determining group differences at predetermined probability p-values less than 0.05. SBS was significantly increased in Gp MSB (15.51 Mpa) and Gp PSB (14.11 Mpa), while the coarse diamond subgroups yielded the lowest mean SBS values [Gp MCD (11.28 Mpa) and Gp PCD (11.62 Mpa)]. The SBS of subgroups MFD, MSB, PCD, and PSB showed significant differences from those of their respective controls (Gp MC and Gp PC). Low ARI scores were observed in Gp MC (0.40) and Gp MSB (0.80), while higher scores were observed in Gp PCD (2.10). Both milled and printed PCs fulfil the clinical criteria of the minimum SBS for orthodontic brackets for long-term use. However, milled PC has better SBS and low ARI scores, which make it more clinically feasible for orthodontic treatments. Full article
Show Figures

Figure 1

18 pages, 27554 KiB  
Article
Comparative Evaluation of Shear Bond Strength of Aesthetic Orthodontic Brackets Bonded to Aged Composite Restorative Resin Materials
by Mohammed E. Sayed
Polymers 2025, 17(5), 621; https://doi.org/10.3390/polym17050621 - 26 Feb 2025
Viewed by 498
Abstract
Patient demands for aesthetic orthodontic brackets (OBs) has increased since orthodontic treatments are of long duration. Clinicians encounter old composite restorations frequently, against which OBs need to be bonded. This study aims to determine the shear bond strength (SBS) of two aesthetic OBs [...] Read more.
Patient demands for aesthetic orthodontic brackets (OBs) has increased since orthodontic treatments are of long duration. Clinicians encounter old composite restorations frequently, against which OBs need to be bonded. This study aims to determine the shear bond strength (SBS) of two aesthetic OBs (ceramic and resin) against aged composite resins (flowable and packable) after standard surface treatment. A total of 96 disk-shaped specimens of two aged (A) composite resins [flowable (F) and packable (P)] were divided into eight groups, using ceramic (C) and plastic (P) brackets, out of which four subgroups served as the control [non-aged (N)FC, NPC, NFR, NPR] and four as experimental [AFC, APC, AFR, APR]. Surface treatment included mechanical [air abrasion] and chemical [Assure Plus and Transbond XT]. After 24 h of storage, the specimens were tested for SBS and observed for failure mode using adhesive remnant index scores. Mean values of SBS in each subgroup were analyzed statistically using a one-way analysis of variance test and Tukey post hoc test. All probability ‘p’ differences were significant at a value of 0.05 and less. All aged composite resin subgroups had decreased bond strength than controls, with all subgroups bonded with plastic brackets having the least bond strengths that were clinically nonacceptable [≤7 to 10 MPa]. Flowable composites when bonded with either ceramic or plastic brackets had higher strength than packable composites. Ceramic brackets had higher SBS than plastic brackets for both flowable and packable composites. Significant differences in bond strength were observed among subgroups of plastic brackets. Ceramic brackets were associated with a higher residue of adhesives on the composite surface. Aged composite resins exhibit significantly lower SBS than fresh composites, with ceramic brackets and flowable composites producing better bond strength values than plastic brackets and packable composites. Full article
Show Figures

Figure 1

18 pages, 2227 KiB  
Article
Comparative Assessment of the Influence of Various Time Intervals upon the Linear Accuracy of Regular, Scannable, and Transparent Vinyl Polysiloxane-Based Bite Registration Materials for Indirect Dental Restoration Fabrication
by Firas K. Alqarawi, Bandar M. A. AL-Makramani, Praveen Gangadharappa, Khurshid Mattoo, Maryam Hadi, Mohammad Alamri, Ebrahim Fihaid Alsubaiy, Saeed M. Alqahtani and Mohammed E. Sayed
Polymers 2025, 17(1), 52; https://doi.org/10.3390/polym17010052 - 28 Dec 2024
Cited by 1 | Viewed by 861
Abstract
Interocclusal records (IORs) created with bite registration materials (BRMs) accurately reflect the opposing teeth’s physiological and anatomical associations in digital and traditional dentistry. This study assessed the linear dimensional accuracy of vinyl polysiloxane-based scannable and transparent BRMs over obligatory clinical time intervals (1, [...] Read more.
Interocclusal records (IORs) created with bite registration materials (BRMs) accurately reflect the opposing teeth’s physiological and anatomical associations in digital and traditional dentistry. This study assessed the linear dimensional accuracy of vinyl polysiloxane-based scannable and transparent BRMs over obligatory clinical time intervals (1, 24, 72, and 168 h/s). A total of 3 scannable [Flexitime Bite, Occlufast CAD, Virtual CADBite] and 3 transparent [Maxill Bite, Charmflex Bite, Defend ClearBite] VPS-based BRMs were divided into 28 subgroups by time interval: 1, 24, 72, and 168 h/s. Stereomicroscope measurements of 420 standardised disk-shaped specimens with three distinct linear distances between crossing vertical and horizontal lines were taken. Comparisons with the conventional BRM determined the scannable and transparent BRMs’ accuracy, while comparisons with die dimensions yielded linear dimensional changes. Statistical analysis used median rank scores, interquartile range, and median. Using a one-way ANOVA rank and Dunn test, differences were assessed between and within groups at a probability ‘p’ value of 0.05 (p ≤ 0.05). Mean linear dimensions for CAD and transparent IOR materials were [−0.06 (−0.24%) to −0.15 (−0.6%)] and [−0.06 (0.24%) to −0.10 (0.40%)] millimetres, respectively. Virtual CADBite and Maxill Bite had the lowest linear disagreement after 1 h, but both showed significant variations at 7 days. Other commercial brands maintained their clinically acceptable linear accuracy (0.11). Flexitime Bite (CAD) was the sole material with a linear accuracy above the clinical threshold. IOR shrinkage reduced the linear dimensions in all materials. Until 7 days, all IOR materials except Flexitime bite (CAD) were clinically correct. Virtual CADBite and Maxill bite changed significantly during 1 h and 7 days. Full article
Show Figures

Figure 1

14 pages, 1446 KiB  
Article
Assessment of Surface Roughness, Color, and Bonding Efficacy: Self-Adhesive vs. Conventional Flowable Resin
by Caroline de Farias Charamba Leal, Beatriz Barros Viana, Samille Biasi Miranda, Renally Bezerra Wanderley e Lima, Cleyton Cézar Souto Silva, Rodrigo Barros Esteves Lins, André Ulisses Dantas Batista, Ana Karina Maciel de Andrade and Marcos Antônio Japiassú Resende Montes
Polymers 2024, 16(18), 2556; https://doi.org/10.3390/polym16182556 - 10 Sep 2024
Cited by 2 | Viewed by 1280
Abstract
This in vitro study aimed to analyze the surface roughness (Ra) and color stability (ΔEab, ΔE00) following simulated mechanical brushing and to evaluate the microtensile (μTBS) of self-adhering resin flowable (SARF) to dentin. The selected materials were Constic, Yflow AS, and Tetric N [...] Read more.
This in vitro study aimed to analyze the surface roughness (Ra) and color stability (ΔEab, ΔE00) following simulated mechanical brushing and to evaluate the microtensile (μTBS) of self-adhering resin flowable (SARF) to dentin. The selected materials were Constic, Yflow AS, and Tetric N flow (TNF/control). Thirty composite resin cylinders were fabricated for surface property evaluation. Ra and color were assessed both before and after simulated brushing. The thresholds of 50:50% perceptibility and acceptability of color differences in the evaluated resins were assessed. For μTBS analysis, fifteen molars were selected, sectioned to expose flat dentin surfaces, and restored according to the manufacturers’ instructions for microtensile testing. There were statistically significant differences in Ra among the groups, with Constic exhibiting the highest Ra value (0.702 µm; p < 0.05), whereas Yflow AS presented the lowest Ra value (0.184 µm). No statistically significant difference in color was observed among the groups (p > 0.05). The 50:50% perceptibility and acceptability thresholds were set at 1.2 and 2.7 for ΔEab and 0.8 and 1.8 for ΔE 00. All the results fell within the acceptable limits. The mean μTBS values of Constic, Yflow AS, and TNF were 10.649 MPa, 8.170 MPa, and 33.669 MPa, respectively. This study revealed increased Ra and comparable color stability among all the tested composite resins after abrasion. However, the SARF exhibited lower μTBS compared to conventional using an adhesive system. Full article
Show Figures

Figure 1

Back to TopTop