Special Issue "RubberCon 2021: Innovative Pioneers for Smart and Sustainable Rubber Technology"

A special issue of Polymers (ISSN 2073-4360).

Deadline for manuscript submissions: closed (31 July 2022) | Viewed by 5037

Special Issue Editors

Prof. Dr. Sang Eun Shim
E-Mail Website1 Website2
Guest Editor
Department of Chemical Engineering, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, Korea
Interests: polymer-based hybrid materials; polymer alloy and blending; polymer nanocomposites for electronic devices; polydimethyl siloxane synthesis and applications; polymer colloids and dispersions; thermally insulative and conductive materials; water purification using functional polymers; polymer-based energy materials
Special Issues, Collections and Topics in MDPI journals
Prof. Dr. Jeong Seok Oh
E-Mail Website
Guest Editor
Department of Materials Engineering and Convergence Technology, Gyeongsang National University, Jinju, Korea
Interests: elastomer recycling; biopolyurethane; biomass-derived carbon; fuel cell gasket; biodegradable polymers; seating comfort; perceived materials; automotive rubber parts; automotive interior parts
Prof. Dr. Seung Hyun Lee
E-Mail Website
Guest Editor
1. Department of Chemical and Molecular Engineering, Hanynag University, Ansan 04763, Korea
2. Department of Bionano Engineering, Hanynag University ERICA, Ansan 04763, Korea
Interests: plasmonic hybrid nanomaterials and polymer nanocomposites with carbon and boron-nitride nanomaterials for sensor and energy applications

Special Issue Information

Dear Colleagues,

We are guest editors for a Special Issue entitled “RubberCon 2021: Innovative Pioneers for Smart and Sustainable Rubber Technology” to be published in the open access journal Polymers (JIF: 4.329; Citescore: 3.7; ranks Q1 in the category “Polymer Science”) published by MDPI.

Given your renowned expertise and significant contribution to this field, I would like to invite you to contribute to this Special Issue. In this regard, we would be very pleased if you would agree to contribute a short communication, research paper or a review article on this theme presented at RubberCon 2021.

Selected topics of the conferences are as follows:

- Advanced elastomer composites
- Advanced nanocomposites for smart materials
- Elastomer performance and reliability
- Smart tire technology
- Sustainability in automotive parts

Deadline for manuscript submissions: 30 April 2022

We look forward to your great contributions.

Prof. Dr. Sang-Eun Shim
Prof. Dr. Jeong Seok Oh
Prof. Dr. Seung Hyun Lee
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • elastomer composites
  • elastomer nanocomposites
  • wearable smart materials
  • elastomer performances
  • smart tire materials
  • smart stretchable materials

Published Papers (9 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Article
Analysis of Polymeric Components in Particulate Matter Using Pyrolysis-Gas Chromatography/Mass Spectrometry
Polymers 2022, 14(15), 3122; https://doi.org/10.3390/polym14153122 - 31 Jul 2022
Viewed by 248
Abstract
Particulate matters (PMs) such as PM10 and PM2.5 were collected at a bus stop and were analyzed using pyrolysis-gas chromatography/mass spectrometry to identify organic polymeric materials in them. The major pyrolysis products of the PM samples were isoprene, toluene, styrene, dipentene, [...] Read more.
Particulate matters (PMs) such as PM10 and PM2.5 were collected at a bus stop and were analyzed using pyrolysis-gas chromatography/mass spectrometry to identify organic polymeric materials in them. The major pyrolysis products of the PM samples were isoprene, toluene, styrene, dipentene, and 1-alkenes. The pyrolysis products generated from the PM samples were identified using reference polymeric samples such as common rubbers (natural rubber, butadiene rubber, and styrene-butadiene rubber), common plastics (polyethylene, polypropylene, polystyrene, and poly(ethylene terephthalate)), plant-related components (bark, wood, and leaf), and bitumen. The major sources of the principal polymeric materials in the PM samples were found to be the abrasion of the tire tread and asphalt pavement, plant-related components, and lint from polyester fabric. The particles produced by the abrasion of the tire tread and asphalt pavement on the road were non-exhaustive sources, while the plant-related components and lint from polyester fabric were inflowed from the outside. Full article
Show Figures

Figure 1

Article
Fabrication of Multi-Vacancy-Defect MWCNTs by the Removal of Metal Oxide Nanoparticles
Polymers 2022, 14(14), 2942; https://doi.org/10.3390/polym14142942 - 20 Jul 2022
Viewed by 284
Abstract
This study aims to increase the specific surface area of multi-walled carbon nanotubes (MWCNTs) by forming and subsequently removing various metal oxide nanoparticles on them. We used facile methods, such as forming the particles without using a vacuum or gas and removing these [...] Read more.
This study aims to increase the specific surface area of multi-walled carbon nanotubes (MWCNTs) by forming and subsequently removing various metal oxide nanoparticles on them. We used facile methods, such as forming the particles without using a vacuum or gas and removing these particles through simple acid treatment. The shapes of the composite structures on which the metal oxide particles were formed and the formation of multi-vacancy-defect MWCNTs were confirmed via transmission electron microscopy and scanning electron microscopy. The crystallinity of the formed metal oxide particles was confirmed using X-ray diffraction analysis. Through specific surface area analysis and Raman spectroscopy, the number of defects formed and the degree and tendency of defect-formation in each metal were determined. In all the cases where the metal oxide particles were removed, the specific surface area increased, and the metal inducing the highest specific surface area was determined. Full article
Show Figures

Figure 1

Article
Construction, Physical Properties and Foaming Behavior of High-Content Lignin Reinforced Low-Density Polyethylene Biocomposites
Polymers 2022, 14(13), 2688; https://doi.org/10.3390/polym14132688 - 30 Jun 2022
Viewed by 324
Abstract
Lignin was chemically modified with oligomeric polyethylene (oPE) to form oPE-grafted lignin (oPE-g-lignin) via lignin surface acylation and a radical coupling reaction with oPE. Then, pristine lignin and oPE-g-lignin were successfully compounded with low-density polyethylene (LDPE) through a typical [...] Read more.
Lignin was chemically modified with oligomeric polyethylene (oPE) to form oPE-grafted lignin (oPE-g-lignin) via lignin surface acylation and a radical coupling reaction with oPE. Then, pristine lignin and oPE-g-lignin were successfully compounded with low-density polyethylene (LDPE) through a typical compounding technique. Due to the oligomeric polyethylene chains grafted to the lignin’s surface, the interfacial adhesion between the lignin particles and the LDPE matrix was considerably better in the oPE-g-lignin/LDPE biocomposite than in the pristine-lignin/LDPE one. This demonstrated that oPE-g-lignin can serve as both a biodegradable reinforcing filler, which can be loaded with a higher lignin content at 50 wt-%, and a nucleating agent to increase the crystallization temperature and improve the tensile characteristics of its LDPE biocomposites. Moreover, the foamability of the lignin-reinforced LDPE biocomposites was studied in the presence of a chemical blowing agent (azodicarbonamide) with dicumyl peroxide; for an oPE-g-lignin content up to 20 wt-%, the cell size distribution was quite uniform, and the foam expansion ratios (17.69 ± 0.92) were similar to those of the neat LDPE foam (17.04 ± 0.44). Full article
Show Figures

Graphical abstract

Article
Physical Properties of Slide-Ring Material Reinforced Ethylene Propylene Diene Rubber Composites
Polymers 2022, 14(10), 2121; https://doi.org/10.3390/polym14102121 - 23 May 2022
Viewed by 366
Abstract
High-damping rubber composites were prepared by mixing ethylene propylene diene monomer rubber (EPDM) with slide-ring (SR) materials using a two-roll mill, followed by a compression molding technique. SR material has a novel supramolecular structure with unique softness and slidable crosslink junctions. The mechanical [...] Read more.
High-damping rubber composites were prepared by mixing ethylene propylene diene monomer rubber (EPDM) with slide-ring (SR) materials using a two-roll mill, followed by a compression molding technique. SR material has a novel supramolecular structure with unique softness and slidable crosslink junctions. The mechanical strength, thermal stability, compression set property, and damping performance of the composites were investigated. The use of the high damping SR phase dispersed in the EPDM matrix displayed improved physical properties and damping performance compared to those of virgin rubber. As SR content increases in the composites, the damping factor of SR/EPDM blends becomes higher at room temperature. In addition to this, the SR composites showed excellent improvements in the compression set properties. The composites showed a compression set improvement of 35–38% compared to virgin EPDM. These improvements are due to the “pulley effect” of slide-ring materials. Therefore, these materials present a robust platform for making novel elastomer composites for high-performance damping and sealing applications. Full article
Show Figures

Figure 1

Article
Durability and Service Life Prediction of Fluorocarbon Elastomer under Thermal Environments
Polymers 2022, 14(10), 2047; https://doi.org/10.3390/polym14102047 - 17 May 2022
Viewed by 410
Abstract
This study investigated the service life prediction of fluorocarbon elastomers that are used in automotive vapor fuel hoses under thermal environments. The changes in mechanical properties such as the tensile strength, elongation, compression set (CS), and hardness according to thermal aging were investigated [...] Read more.
This study investigated the service life prediction of fluorocarbon elastomers that are used in automotive vapor fuel hoses under thermal environments. The changes in mechanical properties such as the tensile strength, elongation, compression set (CS), and hardness according to thermal aging were investigated for two types of ternary fluoroelastomers. Destructive tests of the tensile strength and elongation showed large variations in the mechanical properties under the same condition because there is no continuity of samples. In contrast, nondestructive tests of the CS and hardness showed little variations in the mechanical properties under the same condition. The elongation, CS, and hardness were selected as the physical parameters for service life prediction as they showed a tendency according to the aging temperature, which is an accelerating factor. The effective activation energy derived using each physical parameter was 74.91–159.6 kJ mol−1, and the service life was 17.8–140 × 103 h based on B10. In this study, hardness, which has a small deviation between samples, is considered appropriate as mechanical parameter for predicting the service lifetime. Full article
Show Figures

Graphical abstract

Article
Effect of Cyclic Shear Fatigue under Magnetic Field on Natural Rubber Composite as Anisotropic Magnetorheological Elastomers
Polymers 2022, 14(9), 1927; https://doi.org/10.3390/polym14091927 - 09 May 2022
Viewed by 448
Abstract
With the development and wide applicability of rubber materials, it is imperative to determine their performance under various conditions. In this study, the effect of cyclic shear fatigue on natural-rubber-based anisotropic magnetorheological elastomer (MRE) with carbonyl iron particles (CIPs) was investigated under a [...] Read more.
With the development and wide applicability of rubber materials, it is imperative to determine their performance under various conditions. In this study, the effect of cyclic shear fatigue on natural-rubber-based anisotropic magnetorheological elastomer (MRE) with carbonyl iron particles (CIPs) was investigated under a magnetic field. An anisotropic MRE sample was prepared by moulding under a magnetic field. Cyclic shear fatigue tests were performed using a modified electromechanical fatigue system with an electromagnet. The storage modulus (G′) and loss factor in the absence or presence of a magnetic field were measured using a modified dynamic mechanical analysis system. Under a magnetic field, fatigue exhibited considerable effects to the MRE, such as migration and loss of magnetised CIPs and suppressed increase in stiffness by reducing the energy loss in the strain cycle. Therefore, the G′ of the MRE after fatigue under a magnetic field was lower than that after fatigue in the zero field. The performance of the MRE, such as absolute and relative magnetorheological effects, decreased after subjecting to cyclic shear fatigue. In addition, all measured results exhibited strain-dependent behaviour owing to the Payne effect. Full article
Show Figures

Graphical abstract

Article
Preparation and Characterization of Model Tire–Road Wear Particles
Polymers 2022, 14(8), 1512; https://doi.org/10.3390/polym14081512 - 08 Apr 2022
Viewed by 562
Abstract
Tire tread wear particles (TWPs) are one of major sources of microplastics in the environment. Tire–road wear particles (TRWPs) are mainly composed of TWPs and mineral particles (MPs), and many have long shapes. In the present work, a preparation method of model TRWPs [...] Read more.
Tire tread wear particles (TWPs) are one of major sources of microplastics in the environment. Tire–road wear particles (TRWPs) are mainly composed of TWPs and mineral particles (MPs), and many have long shapes. In the present work, a preparation method of model TRWPs similar to those found in the environment was developed. The model TRWPs were made of TWPs of 212–500 μm and MPs of 20–38 μm. Model TWPs were prepared using a model tire tread compound and indoor abrasion tester while model MPs were prepared by crushing granite rock. The TWPs and MPs were mixed and compressed using a stainless steel roller. The TWPs were treated with chloroform to make them stickier. Many MPs in the model TRWP were deeply stuck into the TWPs. The proper weight ratio of MP and TWP was MP:TWP = 10:1, and the double step pressing procedure was good for the preparation of model TRWPs. The model TRWPs were characterized using scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The model TRWPs had long shapes and the MP content was about 10%. The model TRWPs made of TWPs and asphalt pavement wear particles showed plate-type particles deeply stuck into the TWP. Characteristics of model TRWPs can be controlled by employing various kinds and sizes of TWPs and MPs. The well-defined model TRWPs can be used as the reference TRWPs for tracing the pollutants. Full article
Show Figures

Figure 1

Article
Design of Self-Healing EPDM/Ionomer Thermoplastic Vulcanizates by Ionic Cross-Links for Automotive Application
Polymers 2022, 14(6), 1156; https://doi.org/10.3390/polym14061156 - 14 Mar 2022
Viewed by 689
Abstract
The development of smart elastomeric materials with inherent self-repairing abilities after mechanical damage has important technological and scientific implications, particularly in regard to the durability and life cycle of rubber products. The interest in self-healing materials for automotive applications is rapidly growing along [...] Read more.
The development of smart elastomeric materials with inherent self-repairing abilities after mechanical damage has important technological and scientific implications, particularly in regard to the durability and life cycle of rubber products. The interest in self-healing materials for automotive applications is rapidly growing along with the increasing importance of vehicle scratch quality and quantity. The creation of a reversible network by noncovalent ionic cross-linking in elastomer/rubber blends is an effective approach to generate the self-healing phenomenon, with reprocessing and recycling properties. In this work, thermoplastic vulcanizates (TPVs) were prepared using ethylene–propylene–diene (EPDM) polymers and high-acid-containing thermoplastic ionomers. Along with the general EPDM, maleic anhydride grafted EPDM (EPDM-g-MAH) was also used for the preparation of the TPVs. The strategy was based on a simple ionic crosslinking reaction between the carboxyl groups present in the ionomer and zinc oxide (ZnO), where the formation of reversible Zn2+ salt bondings exhibits the self-healing behavior. The heterogeneous blending of EPDM and ionomers was also used to investigate the thermal and mechanical properties of the TPVs. The experimental findings were further supported by the surface morphology of the fracture surfaces viewed using microscopy. The self-healing behavior of the TPVs has been identified by scratch resistance testing, where the EPDM-g-MAH TPVs showed excellent healing efficiency of the scratch surface. Therefore, this work provides an efficient approach to fabricate new ionically cross-linked thermoplastic vulcanizates with excellent mechanical and self-repairing properties for the skins of automotive interior door trims and instrument panel applications. Full article
Show Figures

Graphical abstract

Article
Classification and Characterization of Tire-Road Wear Particles in Road Dust by Density
Polymers 2022, 14(5), 1005; https://doi.org/10.3390/polym14051005 - 02 Mar 2022
Viewed by 784
Abstract
Tire treads are abraded by friction with the road surface, producing tire tread wear particles (TWPs). TWPs combined with other particles on the road such as road wear particles (RWPs) and mineral particles (MPs), forming tire-road wear particles (TRWPs). Dust on an asphalt [...] Read more.
Tire treads are abraded by friction with the road surface, producing tire tread wear particles (TWPs). TWPs combined with other particles on the road such as road wear particles (RWPs) and mineral particles (MPs), forming tire-road wear particles (TRWPs). Dust on an asphalt pavement road is composed of various components such as TRWPs, asphalt pavement wear particles (APWPs), MPs, plant-related particles (PRPs), and so on. TRWPs have been considered as one of major contaminants produced by driving and their properties are important for study on real abrasion behaviors of tire treads during driving as well as environmental contamination. Densities of the TRWPs are totally dependent on the amount of the other components deposited in the TWPs. In this study, a classification method of TRWPs in the road dust was developed using density separation and the classified TRWPs were characterized using image analysis and pyrolytic technique. Chloroform was used to remove APWPs from mixture of TRWPs and APWPs. TRWPs were found in the density range of 1.20–1.70 g/cm3. By decreasing the particle size of the road dust, the TRWP content in the road dust increased and its density slightly tended to increase. Aspect ratios of the TRWPs varied and there were many TRWPs with low aspect ratio below 2.0. The aspect ratio range was 1.2–5.2. Rubber compositions of the TRWPs were found to be mainly NR/SBR biblend or NR/BR/SBR triblend. Full article
Show Figures

Graphical abstract

Back to TopTop