Special Issue "Polymeric Composites in Road and Bridge Engineering: Characterization, Production and Application"

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Applications".

Deadline for manuscript submissions: 25 December 2022 | Viewed by 4354

Special Issue Editors

Prof. Dr. Wensheng Wang
E-Mail Website
Guest Editor
College of Transportation, Jilin University, NO. 5988 Renmin Street, Changchun 130022, China
Interests: nondestructive testing technology; structural health monitoring; bridge and infrastructure engineering; road materials and pavement design
Special Issues, Collections and Topics in MDPI journals
Prof. Dr. Yongchun Cheng
E-Mail Website
Guest Editor
College of Transportation, Jilin University, Changchun 130022, China
Interests: pavement engineering; construction materials; polymers; viscoelastic properties; asphalt & cement-based materials; advanced pavement material design
Prof. Dr. Heping (Fred) Chen
E-Mail Website
Guest Editor
Ingram School of Engineering, 601 University Drive, Texas State University, San Marcos, TX 78666, USA
Interests: digital image processing; numerical simulation; cloud manufacturing; advanced materials; human-robot interaction/cooperation; design optimization
Prof. Dr. Guojin Tan
E-Mail Website
Guest Editor
College of Transportation, Jilin University, No. 5988 Renmin Street, Changchun 130022, China
Interests: small and medium span bridge detection; bridge reliability assessment and reinforcement; bridge structural dynamics; performance evaluation of existing bridge structure
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Roads, bridges, airports, and ports are multirole transportation infrastructure assets, which rely heavily on asphalt, cement, and aggregates in traditional civil engineering. Multirole transportation infrastructures should be resistant enough against structural loads and vehicle loads. Further, multirole transportation infrastructures are greatly affected by climate change, which has the potential to impact both long- and short-term infrastructure performance. Recent developments in materials science, especially polymers, have brought new perspectives in the modification of civil engineering materials and consequent improvements. Being both strong and lightweight, polymer composites have already found wide-ranging uses in civil engineering. The application of various types of polymers includes admixtures and additives (e.g., alternative binders, polymer fibers) for enhanced mechanical performances and enhanced functional properties such as self-healing and self-cleaning. Therefore, it is necessary to analyze advanced functional polymer composites sitting at the intersection of physics, chemistry, materials science, and engineering. This Special Issue is concerned with the possible applications of polymeric composites to develop new technologies in road and bridge engineering, which will focus on current and future research toward characterization techniques, evaluation tools, and the production of advanced functional polymer composites.

Potential topics include but are not limited to:

  • Recycling and resource recovery from polymers for green building materials;
  • Advanced functional polymer composites for sustainable civil engineering;
  • Multifunctional civil engineering materials for bio-based polymeric applications;
  • Modification of cement/asphalt-based composition with polymers;
  • Characterization of polymer–concrete/mixture composites in construction;
  • Experimental testing and constitutive modeling of polymeric pavement materials;
  • Rheological behavior and mechanics analysis of polymer matrix composites.

Prof. Dr. Wensheng Wang
Prof. Dr. Yongchun Cheng
Prof. Dr. Heping (Fred) Chen
Prof. Dr. Guojin Tan
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • functional polymers
  • polymers recycling and reuse
  • building materials
  • fiber-reinforced composites
  • phase-change materials
  • modification of road materials with polymers
  • self-healing
  • anti-aging
  • mechanical performance
  • nondestructive assessment and health monitoring
  • sustainable development

Published Papers (9 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Article
Triaxial Mechanical Properties and Mechanism of Waterborne Polyurethane-Reinforced Road Demolition Waste as Road Bases
Polymers 2022, 14(13), 2725; https://doi.org/10.3390/polym14132725 - 03 Jul 2022
Viewed by 226
Abstract
The recycling and reuse of construction waste have not only effectively protected natural resources but also promoted the sustainable development of the environment. Therefore, in this article, waterborne polyurethane (WPU) as a promising new polymer reinforcement material was proposed to reinforce the road [...] Read more.
The recycling and reuse of construction waste have not only effectively protected natural resources but also promoted the sustainable development of the environment. Therefore, in this article, waterborne polyurethane (WPU) as a promising new polymer reinforcement material was proposed to reinforce the road demolition waste (RDW), and the mechanical performance of WPU-reinforced RDW (named PURD) was investigated using triaxial unconsolidated and undrained shear (UU) and Scanning Electron Microscope (SEM) tests. The results showed that under the same curing time and confining pressure, the shear strength of PURD increased with the increase in WPU content. When the WPU content was 6%, the WPU presented the best reinforcement effect on RA. The failure strain of PURD increased with the increase in confining pressure, but increased first and then reduced with the increase in WPU content. The specimens with 5% WPU content showed the best ductility. At the curing time of 7 and 28 days, the internal friction angle and cohesion of PURD increased with the increase in WPU content, and they reached a maximum when the WPU content was 6%. The internal friction angle barely budged, but the cohesion increased obviously. The enhancement effect of WPU was attributed to the spatial reticular membrane structure produced by wrapping and bonding particles with the WPU film. Microscopic analysis showed that with the increase in WPU content, the internal pore and crack size of PURD gradually decreased. As the WPU content increased, the WPU film became increasingly thicker, which increased the adhesion between WPU and RA particles and made the structure of PURD become increasingly denser. Full article
Show Figures

Graphical abstract

Article
The Elastic Modulus and Damage Stress–Strain Model of Polypropylene Fiber and Nano Clay Modified Lime Treated Soil under Axial Load
Polymers 2022, 14(13), 2606; https://doi.org/10.3390/polym14132606 - 27 Jun 2022
Viewed by 226
Abstract
Using polypropylene fiber (PPF) and nano clay modified lime treated soil (LS), the static and dynamic properties of fiber modified lime treated soil (FLS), nano clay modified lime treated soil (NLS), and fiber nano clay composite modified lime treated soil (NFLS) were studied. [...] Read more.
Using polypropylene fiber (PPF) and nano clay modified lime treated soil (LS), the static and dynamic properties of fiber modified lime treated soil (FLS), nano clay modified lime treated soil (NLS), and fiber nano clay composite modified lime treated soil (NFLS) were studied. Through the unconfined compressive strength (UCS) test and dynamic triaxial test of FLS, NLS, and NFLS, the static and dynamic elastic modulus characteristics at 7 day curing age were explored, and the damage stress–strain model was established. The results show that: (1) Polypropylene fiber and nano clay can significantly enhance the mechanical properties of NFLS. Nano clay can promote the reaction between lime and soil to produce calcium silicate hydrate (C-S-H) and calcium aluminate hydrate (C-A-H), thus improving the strength of NFLS, and UCS can be increased by up to 103%. Polypropylene fiber can enhance the ductility of NFLS and increase the residual ductility strength, and the residual strength can be increased by 827%. (2) Nano clay can enhance the static and dynamic elastic modulus of modified lime treated soil. The static and dynamic elastic modulus of NLS, FLS, and NFLS are linear with the change of polypropylene fiber and nano clay content. The static and dynamic elastic modulus of NLS, FLS, and NFLS are linear, exponential, and logarithmic, respectively. (3) The mesoscopic random damage model can characterize the stress–strain relationship of NFLS. Polypropylene fiber and nano clay can improve the ductility and strength of modified LS, and the composite addition of polypropylene fiber and nano clay can improve the ability of modified LS to resist damage. Full article
Show Figures

Figure 1

Article
Investigation of the High-Temperature and Rheological Properties for Asphalt Sealant Modified by SBS and Rubber Crumb
Polymers 2022, 14(13), 2558; https://doi.org/10.3390/polym14132558 - 23 Jun 2022
Viewed by 203
Abstract
Crack sealing is an important measure for pavement maintenance. Hot-poured crack sealant is the most utilized material for crack sealing. However, its poor high-temperature and rheological properties seriously weaken the mechanical properties of repaired pavement. Thus, to overcome the disadvantage of the poor [...] Read more.
Crack sealing is an important measure for pavement maintenance. Hot-poured crack sealant is the most utilized material for crack sealing. However, its poor high-temperature and rheological properties seriously weaken the mechanical properties of repaired pavement. Thus, to overcome the disadvantage of the poor high-temperature and rheological properties of sealant, styrene–butadiene–styrene (SBS) and rubber crumb (CR) were utilized for modifying the asphalt-based sealants. Softening point tests, temperature tests, frequency scan tests, and multiple stress creep recovery tests (MSCR) were conducted to evaluate the high-temperature and rheological properties of the modified sealant. Additionally, the influence of SBS and CR on the high-temperature performance of the modified sealant was quantitatively analyzed by the grey relational analysis method. The results reveal that the SBS has a greater enhancement effect on the high-temperature performance of sealant than CR. Increasing the SBS and CR content in the sealant could enhance the sealant’s high-temperature performance, stiffness, and elasticity. Compared with asphalt-based sealant and one-component modified asphalt-based sealant, SBS/CR-modified asphalt sealant has greater viscosity and higher temperature deformation resistance. Additionally, SBS can increase the stress level of the sealant, thereby enhancing the resistance of the sealant to permanent deformation. Full article
Show Figures

Figure 1

Article
Study on Compressive Properties and Dynamic Characteristics of Polypropylene-Fiber-and-Cement-Modified Iron-Ore Tailing under Traffic Load
Polymers 2022, 14(10), 1995; https://doi.org/10.3390/polym14101995 - 13 May 2022
Viewed by 365
Abstract
Using polypropylene (PP) fiber and cement to modify iron-ore tailing and applying it to road engineering is an effective way to reuse iron-ore tailing. The compressive properties and deformation characteristics of PP-fiber-and-cement-modified iron-ore tailing (FCIT) under traffic load were studied by the unconfined-compressive-strength [...] Read more.
Using polypropylene (PP) fiber and cement to modify iron-ore tailing and applying it to road engineering is an effective way to reuse iron-ore tailing. The compressive properties and deformation characteristics of PP-fiber-and-cement-modified iron-ore tailing (FCIT) under traffic load were studied by the unconfined-compressive-strength (UCS) test and the dynamical-triaxial (DT) test. The test results indicated that the UCS and residual strength both increased with increasing PP-fiber content, and tensile and toughness properties were positively correlated with PP-fiber content. Moreover, the dynamic elastic modulus and damping of FCIT both showed a negative linear relationship with cycle time. It can be found from the test results that 0.75% was the best PP-fiber content to modify iron tailing sand in this work. Lastly, a prediction model was developed to describe the relationship between the cumulative plastic strain, PP-fiber content and cycle time, which can effectively capture the evolution law of the cumulative plastic strain with cycle time of FCITs at different PP-fiber contents. Full article
Show Figures

Figure 1

Article
Experimental Investigation of the High-Temperature Rheological and Aging Resistance Properties of Activated Crumb Rubber Powder/SBS Composite-Modified Asphalt
Polymers 2022, 14(9), 1905; https://doi.org/10.3390/polym14091905 - 06 May 2022
Viewed by 382
Abstract
Crumb rubber could form the active groups on the surface by interrupting the crosslinking bond to improve the compatibility with asphalt. While styrene-butadiene-styrene block copolymer (SBS)-modified asphalt has excellent comprehensive properties, it has poor anti-aging performance and a high cost. To explore the [...] Read more.
Crumb rubber could form the active groups on the surface by interrupting the crosslinking bond to improve the compatibility with asphalt. While styrene-butadiene-styrene block copolymer (SBS)-modified asphalt has excellent comprehensive properties, it has poor anti-aging performance and a high cost. To explore the influence of composite modification of activated crumb rubber powder (ACR) and SBS on asphalt, modified asphalt samples with different modifiers and SBS contents were prepared. Conventional physical properties tests, a dynamic shear rheometer (DSR), and the thin-film oven test (TFOT) were used to study the conventional physical properties, high-temperature rheological properties, and aging resistance of asphalt. In addition, the action forms and distribution of modifiers in asphalt were observed by an optical microscope to characterize the micro-morphology of ACR/SBS composite-modified asphalt. Test results showed that after adding SBS, the softening point, ductility, and elastic recovery of ACR/SBS asphalt could be significantly improved, but the viscosity and softening point difference were also larger. At the same time, according to the complex shear modulus, phase angle, and rutting factor, SBS can effectively improve the high-temperature deformation resistance of ACR/SBS asphalt. The modified asphalt (ACR/SBS-2) had good high- and low- temperature performances, as well as an appropriate viscosity and low softening point difference, as a research object of aging. After short-term aging, the changes in the high- and low-temperature performances and workability of ACR/SBS asphalt were reduced. Taking the softening point as the target performance, the softening point of ACR/SBS asphalt was less affected by aging time and temperature, indicating that ACR/SBS asphalt was not sensitive to aging temperature and had good stability and aging resistance. From the micrograph by microscope, it was found that ACR/SBS asphalt could maintain a relatively stable polyphase structure for aging resistance. Full article
Show Figures

Figure 1

Article
Effect of Desulfurization Process Variables on the Properties of Crumb Rubber Modified Asphalt
Polymers 2022, 14(7), 1365; https://doi.org/10.3390/polym14071365 - 28 Mar 2022
Cited by 3 | Viewed by 447
Abstract
A large number of waste tires are in urgent need of effective treatment, and breaking waste tires into crumb rubber powder for modifying asphalt has been proved as a good idea to solve waste tires. Crumb rubber modified asphalt not only has good [...] Read more.
A large number of waste tires are in urgent need of effective treatment, and breaking waste tires into crumb rubber powder for modifying asphalt has been proved as a good idea to solve waste tires. Crumb rubber modified asphalt not only has good high and low temperature performance, durability, and aging resistance but can also reduce pavement noise and diseases, which has wide application prospects. In this study, crumb rubber powder was desulfurized by mechanochemical method to prepare desulfurized crumb rubber modified asphalt. During the desulfurization process of crumb rubber, the effects of desulfurization process variables including desulfurizer type, desulfurizer content, and desulfurization mixing temperature and time were considered, and then the physical properties of modified asphalt were tested. The test results showed that after mixing crumb rubber powder with desulfurizer, the viscosity of crumb rubber powder modified asphalt can be reduced. Moreover, the storage stability of crumb rubber powder modified asphalt could also be improved by mixing crumb rubber with desulfurizer. Based on the physical properties of crumb rubber powder modified asphalt, the desulfurization process of selected organic disulfide (OD) desulfurizer was optimized as follows: the OD desulfurizer content was 3%, the desulfurization mixing temperature was 160 °C, and the mixing time was 30 min. In addition, Fourier infrared spectroscopy analysis was carried out to explore the modification mechanism of desulfurized crumb rubber powder modified asphalt. There is no fracture and formation of chemical bonds, and the modification of asphalt by crumb rubber powder is mainly physical modification. Full article
Show Figures

Figure 1

Article
Investigation on Fatigue Performance of Diatomite/Basalt Fiber Composite Modified Asphalt Mixture
Polymers 2022, 14(3), 414; https://doi.org/10.3390/polym14030414 - 20 Jan 2022
Viewed by 518
Abstract
The fatigue resistance of asphalt mixture is an important indicator to evaluate the durability of asphalt pavement. In order to improve the fatigue properties of asphalt mixture, diatomite and environmental basalt fiber were added. Four types of asphalt mixtures, ordinary asphalt mixture (AM), [...] Read more.
The fatigue resistance of asphalt mixture is an important indicator to evaluate the durability of asphalt pavement. In order to improve the fatigue properties of asphalt mixture, diatomite and environmental basalt fiber were added. Four types of asphalt mixtures, ordinary asphalt mixture (AM), diatomite modified asphalt mixture (DAM), basalt fiber modified asphalt mixture (BFAM) and diatomite/basalt fiber composite modified asphalt mixture (DBFAM), were chosen, whose optimum asphalt–aggregate ratio, optimum content of diatomite and optimum content of basalt fiber could be determined by Marshall test and response surface methodology (RSM). The multi-functional pneumatic servo Cooper test machine was carried out by a four-point bending fatigue test. Through the comparative analysis of flexural-tensile stiffness modulus (S), initial stiffness modulus(S0), residual stiffness modulus ratio, lag angle (ϕ) and cumulative dissipation energy (ECD), the fatigue resistance of asphalt mixture can be effectively improved by adding diatomite and basalt fiber. Grey correlation analysis was also used to analyze the degree of correlation between the fatigue life and the influencing factors such as VV, VMA, VFA, OAC, S, and ECD. The analysis results indicate that ECD has the greatest impact on the fatigue life of the asphalt mixture. Full article
Show Figures

Figure 1

Article
Structural Design Calculation of Basalt Fiber Polymer-Modified RPC Beams Subjected to Four-Point Bending
Polymers 2021, 13(19), 3261; https://doi.org/10.3390/polym13193261 - 24 Sep 2021
Cited by 1 | Viewed by 531
Abstract
In this paper, a basalt fiber surface was treated with coupling agent KH-550 and hydrochloric acid, and the basalt fiber polymer-modified active powder concrete (RPC) material was prepared. There are significant differences in material composition and properties between basalt fiber polymer-modified RPC and [...] Read more.
In this paper, a basalt fiber surface was treated with coupling agent KH-550 and hydrochloric acid, and the basalt fiber polymer-modified active powder concrete (RPC) material was prepared. There are significant differences in material composition and properties between basalt fiber polymer-modified RPC and ordinary concrete, and the structural design calculation (cracking moment and normal section bending bearing capacity) of an ordinary reinforced concrete beam is no longer applicable. Thus, mechanical parameters such as displacement and strain of reinforcement basalt fiber polymer-modified RPC beams subjected to four-point bending were tested. The excellent compressive and tensile strengths of basalt fiber polymer-modified RPC were fully utilized. The tensile strength of basalt fiber polymer-modified RPC in the tensile zone of the beam was considered in the calculation of normal section bending bearing capacity of reinforcement basalt fiber polymer-modified RPC beams. The results showed that the measured values of the cracking moment and ultimate failure bending moment of reinforcement basalt fiber polymer-modified RPC beams were in good agreement with the calculated values. The established formulas for cracking moment and normal section bending bearing capacity can provide references for the design of reinforcement basalt fiber polymer-modified RPC simply supported beam and promote the wide application of basalt fiber polymer-modified RPC materials in practical engineering. Full article
Show Figures

Graphical abstract

Article
Rheological and Aging Properties of Composite Modified Bitumen by Styrene–Butadiene–Styrene and Desulfurized Crumb Rubber
Polymers 2021, 13(18), 3037; https://doi.org/10.3390/polym13183037 - 08 Sep 2021
Cited by 2 | Viewed by 625
Abstract
Taking advantage of crumb rubber from waste tires to modify bitumen is widely for the environmentally friendly and sustainable development of pavement. This study investigated the modification mechanism, rheological, and aging properties of styrene–butadiene–styrene (SBS)/desulfurized crumb rubber (DCR) composite modified bitumen (SBS/DCRMB). Morphological [...] Read more.
Taking advantage of crumb rubber from waste tires to modify bitumen is widely for the environmentally friendly and sustainable development of pavement. This study investigated the modification mechanism, rheological, and aging properties of styrene–butadiene–styrene (SBS)/desulfurized crumb rubber (DCR) composite modified bitumen (SBS/DCRMB). Morphological features and chemical characteristics were assessed by fluorescence intensity measurement and gel permeation chromatography (GPC), respectively, and results demonstrated that the DCR and SBS modifier in SBS/DCRMB had been vulcanized and formed a three-dimensional network structure. Moreover, a comparison of the GPC elution curve showed the residual bitumen hardly changed due to carbon black released from DCR of SBS/DCRMB during the aging process of SBS/DCRMB, and the polymer molecules condensed to larger units. However, the remaining bitumen in SBSMB had changed evidently and the polymer degraded to smaller molecules. Meanwhile the rheological testing results, including multiple stress creep recovery, linear amplitude sweep and bending beam rheometer, declared that the SBS/DCRMB is superior to SBSMB before and after aging. Full article
Show Figures

Graphical abstract

Back to TopTop