polymers-logo

Journal Browser

Journal Browser

Biodegradable Polymers for Sustainable Development

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Biobased and Biodegradable Polymers".

Deadline for manuscript submissions: closed (30 June 2024) | Viewed by 5243

Special Issue Editors


E-Mail Website
Guest Editor
Centre of Polymer and Carbon Materials Polish Academy of Sciences, M. Curie-Sklodowskiej St. 34, 41-800 Zabrze, Poland
Interests: biocompatible and biodegradable polymer systems; polymer mass spectrometry; bioactive oligomers; controlled drug delivery systems; ring-opening polymerization; forensic engineering of advanced polymeric materials
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland
Interests: sustainable polymers; biocompatible polymer systems; biodegradable polymers; bioactive oligomers; controlled drug delivery systems; ring-opening polymerization; polymers for biomedical applications
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Biodegradable polymers play a crucial role in promoting sustainable development by addressing environmental concerns associated with traditional, non-biodegradable plastics. These polymers are designed to break down into natural compounds, such as water, carbon dioxide, and biomass, through biological processes, reducing their impact on ecosystems and landfills. The development of biodegradable polymer materials necessitates evaluating and understanding the relationships between their structure, properties, and behavior before, during, and after practical applications. The precise design of such materials is necessary to avoid the potential failure of the commercial products manufactured from them and to avoid potential environmental consequences. Thus, biodegradable polymers are an important component of sustainable development efforts, helping to reduce the environmental impact of plastics and promote more responsible resource use. However, their successful integration into various industries and applications requires continued innovation, education, and infrastructure development. This Special Issue welcomes papers that address the interdisciplinary approach to develop biodegradable polymer materials for environmental needs.

Prof. Dr. Marek Kowalczuk
Prof. Dr. Piotr Kurcok
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biodegradable polymers
  • sustainable materials
  • sustainable development
  • composting
  • LCA

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

22 pages, 40119 KiB  
Article
Improving the Tribological Performance of POM through the Incorporation of Bio-Based Materials
by Lucas M. Kneissl, Roberts Joffe, Mitjan Kalin and Nazanin Emami
Polymers 2024, 16(16), 2310; https://doi.org/10.3390/polym16162310 - 15 Aug 2024
Viewed by 1077
Abstract
Polyoxymethylene (POM), an engineering polymer commonly used in tribological applications, is often reinforced with fossil-based fibers such as carbon and/or glass fibers to improve its properties. To find more sustainable solutions, in this study, the tribological performance of POM/short cellulose fiber composites at [...] Read more.
Polyoxymethylene (POM), an engineering polymer commonly used in tribological applications, is often reinforced with fossil-based fibers such as carbon and/or glass fibers to improve its properties. To find more sustainable solutions, in this study, the tribological performance of POM/short cellulose fiber composites at different sliding conditions is investigated. An improvement in the wear coefficient of roughly 69% is observed at the harshest conditions of 5 MPa and 1 m · s−1 with only 10 wt.% cellulose fibers. The friction behavior is furthermore stabilized through fiber addition, as the unfilled polymer did not show a steady state. No signs of thermo-oxidative degradation are found after tribological testing. This study presents promising results for sustainable wear-resistant polymer materials in tribological applications. Full article
(This article belongs to the Special Issue Biodegradable Polymers for Sustainable Development)
Show Figures

Figure 1

21 pages, 8241 KiB  
Article
Degradable Nanogels Based on Poly[Oligo(Ethylene Glycol) Methacrylate] (POEGMA) Derivatives through Thermo-Induced Aggregation of Polymer Chain and Subsequent Chemical Crosslinking
by Katarzyna Filipek, Łukasz Otulakowski, Katarzyna Jelonek and Alicja Utrata-Wesołek
Polymers 2024, 16(8), 1163; https://doi.org/10.3390/polym16081163 - 20 Apr 2024
Cited by 1 | Viewed by 1496
Abstract
Polymer nanogels—considered as nanoscale hydrogel particles—are attractive for biological and biomedical applications due to their unique physicochemical flexibility. However, the aggregation or accumulation of nanoparticles in the body or the occurrence of the body’s defense reactions still pose a research challenge. Here, we [...] Read more.
Polymer nanogels—considered as nanoscale hydrogel particles—are attractive for biological and biomedical applications due to their unique physicochemical flexibility. However, the aggregation or accumulation of nanoparticles in the body or the occurrence of the body’s defense reactions still pose a research challenge. Here, we demonstrate the fabrication of degradable nanogels using thermoresponsive, cytocompatible poly[oligo(ethylene glycol) methacrylate]s-based copolymers (POEGMA). The combination of POEGMA’s beneficial properties (switchable affinity to water, nontoxicity, non-immunogenicity) along with the possibility of nanogel degradation constitute an important approach from a biological point of view. The copolymers of oligo(ethylene glycol) methacrylates were partially modified with short segments of degradable oligo(lactic acid) (OLA) terminated with the acrylate group. Under the influence of temperature, copolymers formed self-assembled nanoparticles, so-called mesoglobules, with sizes of 140–1000 nm. The thermoresponsive behavior of the obtained copolymers and the nanostructure sizes depended on the heating rate and the presence of salts in the aqueous media. The obtained mesoglobules were stabilized by chemical crosslinking via thiol-acrylate Michael addition, leading to nanogels that degraded over time in water, as indicated by the DLS, cryo-TEM, and AFM measurements. Combining these findings with the lack of toxicity of the obtained systems towards human fibroblasts indicates their application potential. Full article
(This article belongs to the Special Issue Biodegradable Polymers for Sustainable Development)
Show Figures

Figure 1

Review

Jump to: Research

13 pages, 929 KiB  
Review
Exploring the Future of Polyhydroxyalkanoate Composites with Organic Fillers: A Review of Challenges and Opportunities
by Abhishek Thakur, Marta Musioł, Khadar Duale and Marek Kowalczuk
Polymers 2024, 16(13), 1768; https://doi.org/10.3390/polym16131768 - 22 Jun 2024
Cited by 1 | Viewed by 1895
Abstract
Biopolymers from renewable materials are promising alternatives to the traditional petroleum-based plastics used today, although they face limitations in terms of performance and processability. Natural fillers have been identified as a strategic route to create sustainable composites, and natural fillers in the form [...] Read more.
Biopolymers from renewable materials are promising alternatives to the traditional petroleum-based plastics used today, although they face limitations in terms of performance and processability. Natural fillers have been identified as a strategic route to create sustainable composites, and natural fillers in the form of waste by-products have received particular attention. Consequently, the primary focus of this article is to offer a broad overview of recent breakthroughs in environmentally friendly Polhydroxyalkanoate (PHA) polymers and their composites. PHAs are aliphatic polyesters obtained by bacterial fermentation of sugars and fatty acids and are considered to play a key role in addressing sustainability challenges to replace traditional plastics in various industrial sectors. Moreover, the article examines the potential of biodegradable polymers and polymer composites, with a specific emphasis on natural composite materials, current trends, and future market prospects. Increased environmental concerns are driving discussions on the importance of integrating biodegradable materials with natural fillers in our daily use, emphasizing the need for clear frameworks and economic incentives to support the use of these materials. Finally, it highlights the indispensable need for ongoing research and development efforts to address environmental challenges in the polymer sector, reflecting a growing interest in sustainable materials across all industries. Full article
(This article belongs to the Special Issue Biodegradable Polymers for Sustainable Development)
Show Figures

Figure 1

Back to TopTop