polymers-logo

Journal Browser

Journal Browser

Biopolymers for Medicinal, Macromolecules, and Food Applications III

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Biobased and Biodegradable Polymers".

Deadline for manuscript submissions: closed (29 February 2024) | Viewed by 12188

Special Issue Editors

Department of Electrical and Electronic Engineering, University of Cagliari, 09123 Cagliari, Italy
Interests: molecular dynamics simulations; density functional theory; protein–ligand; protein–protein interactions; biochemistry
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Medical Science and Public Health, University of Cagliari, 09042 Monserrato, Italy
Interests: inflammatory bowel disease; inflammation; enzymatic activity; nutrition; natural extracts; immunotarget
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Thanks to their versatile properties, biopolymers have applications in medicine, pharmaceutics, food packaging, electronics, tissue engineering, agriculture, and forestry. Their promising physicochemical and bioactive properties have led to their use as wound-dressing materials and in cosmetics. Proteins, which are among the most studied biopolymers, play an important role in task recognition, bioenergetics, and interactions in biologically relevant model systems. This provides us with an opportunity to discuss trends in the application of biopolymers in medicine, macromolecules, and food. 

Dr. Amit Kumar
Dr. Amalia Di Petrillo
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biopolymers
  • proteins
  • enzymes
  • medical applications
  • macromolecular applications
  • food applications

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

16 pages, 2194 KiB  
Article
Ameliorative Effects of Korean-Red-Ginseng-Derived Polysaccharide on Antibiotic-Associated Diarrhea
by Su Ji Min, Hiyoung Kim, Noriko Yambe and Myoung-Sook Shin
Polymers 2024, 16(2), 231; https://doi.org/10.3390/polym16020231 - 14 Jan 2024
Cited by 5 | Viewed by 1236
Abstract
This study evaluated the ameliorative effects of Korean-red-ginseng-derived polysaccharide (KRG-P) on antibiotic-associated diarrhea (AAD) induced by administering lincomycin in mice. Changes of intestinal barrier proteins, the intestinal microbiome and short-chain fatty acid (SCFA) contents were investigated. Lincomycin was orally administered for 9 days [...] Read more.
This study evaluated the ameliorative effects of Korean-red-ginseng-derived polysaccharide (KRG-P) on antibiotic-associated diarrhea (AAD) induced by administering lincomycin in mice. Changes of intestinal barrier proteins, the intestinal microbiome and short-chain fatty acid (SCFA) contents were investigated. Lincomycin was orally administered for 9 days to induce diarrhea; subsequently, 100 mg/kg and 300 mg/kg of KRG-P were administered orally for 12 days. The diarrhea was observed in the AAD group; further KRG-P administration improved the diarrhea. Analysis of changes in the intestinal microbial flora of the mice revealed that the harmful bacterial flora (such as Proteobacteria) were increased in the AAD group, whereas beneficial bacterial flora (such as Firmicutes) were decreased. However, KRG-P administration resulted in decreased Proteobacteria and increased Firmicutes, supporting the improvement of the microbial flora imbalance caused by AAD. Moreover, an analysis of the SCFAs (acetic acid, propionic acid, and butylic acid) in the caecum revealed that SCFAs’ contents in the AAD group were substantially reduced but tended to increase upon KRG-P administration. Based on these results, KRG-P, which is primarily composed of carbohydrates can improve lincomycin-induced diarrhea, likely owing to the recovery of SCFA content by improving the intestinal microbial imbalance and intestinal barrier proteins. Full article
(This article belongs to the Special Issue Biopolymers for Medicinal, Macromolecules, and Food Applications III)
Show Figures

Figure 1

20 pages, 2731 KiB  
Article
Mechanical and Surface Properties of Edible Coatings Elaborated with Nanoliposomes Encapsulating Grape Seed Tannins and Polysaccharides
by Angela Monasterio, Emerson Núñez, Natalia Brossard, Ricardo Vega and Fernando A. Osorio
Polymers 2023, 15(18), 3774; https://doi.org/10.3390/polym15183774 - 15 Sep 2023
Cited by 3 | Viewed by 1597
Abstract
Edible composite coatings (ECC) formulated from biopolymers that incorporate antioxidant molecules represent an innovative alternative to improve food texture and provide health benefits. Tannins have aroused great interest due to their ability to stabilize suspensions and counteract the effects of free radicals. The [...] Read more.
Edible composite coatings (ECC) formulated from biopolymers that incorporate antioxidant molecules represent an innovative alternative to improve food texture and provide health benefits. Tannins have aroused great interest due to their ability to stabilize suspensions and counteract the effects of free radicals. The mechanical and surface properties are crucial to establishing its quality and applicability. In this study, the objective was to analyze the mechanical and surface properties of ECC made with nanoliposomes that encapsulate grape seed tannins (TLS) and polysaccharides such as hydroxypropylmethylcellulose (HPMC) and kappa carrageenan (KCG) for their future direct application in foods susceptible to oxidation. The inclusion of HPMC or KCG affected the density, showing values in the range of 1010 to 1050 [kg/m3], evidencing significant changes (p < 0.05) in the surface tension in the TLS/FS-HPMC and TLS/FS mixtures. KCG and in the dispersion coefficients, with values in the range of −2.9 to −17.6 [mN/m] in HPS (S1) and −17.6 to −40.9 [mN/m] in PDMS (S2). The TLS/FS-HPMC coating showed higher stiffness and elastic recovery capacity than the TLS/FS-KCG coating, suggesting that the presence of TLS influenced the stiffness of the polymer. HPMC is recommended as a suitable polymer for coating solids, while KCG is more appropriate for suspensions. These findings provide valuable information for directly applying these ECC compounds to food products, potentially offering better preservation and health benefits. Full article
(This article belongs to the Special Issue Biopolymers for Medicinal, Macromolecules, and Food Applications III)
Show Figures

Graphical abstract

20 pages, 6663 KiB  
Article
Design, Synthesis, and Comparison of PLA-PEG-PLA and PEG-PLA-PEG Copolymers for Curcumin Delivery to Cancer Cells
by Neda Rostami, Farzaneh Faridghiasi, Aida Ghebleh, Hadi Noei, Meisam Samadzadeh, Mohammad Mahmoudi Gomari, Alireza Tajiki, Majid Abdouss, Alireza Aminoroaya, Manisha Kumari, Reza Heidari, Vladimir N. Uversky and Bryan R. Smith
Polymers 2023, 15(14), 3133; https://doi.org/10.3390/polym15143133 - 23 Jul 2023
Cited by 5 | Viewed by 2891
Abstract
Curcumin (CUR) has potent anticancer activities, and its bioformulations, including biodegradable polymers, are increasingly able to improve CUR’s solubility, stability, and delivery to cancer cells. In this study, copolymers comprising poly (L-lactide)-poly (ethylene glycol)-poly (L-lactide) (PLA-PEG-PLA) and poly (ethylene glycol)-poly (L-lactide)-poly (ethylene glycol) [...] Read more.
Curcumin (CUR) has potent anticancer activities, and its bioformulations, including biodegradable polymers, are increasingly able to improve CUR’s solubility, stability, and delivery to cancer cells. In this study, copolymers comprising poly (L-lactide)-poly (ethylene glycol)-poly (L-lactide) (PLA-PEG-PLA) and poly (ethylene glycol)-poly (L-lactide)-poly (ethylene glycol) (PEG-PLA-PEG) were designed and synthesized to assess and compare their CUR-delivery capacity and inhibitory potency on MCF-7 breast cancer cells. Molecular dynamics simulations and free energy analysis indicated that PLA-PEG-PLA has a higher propensity to interact with the cell membrane and more negative free energy, suggesting it is the better carrier for cell membrane penetration. To characterize the copolymer synthesis, Fourier transform-infrared (FT-IR) and proton nuclear magnetic resonance (1H-NMR) were employed, copolymer size was measured using dynamic light scattering (DLS), and their surface charge was determined by zeta potential analysis. Characterization indicated that the ring-opening polymerization (ROP) reaction was optimal for synthesizing high-quality polymers. Microspheres comprising the copolymers were then synthesized successfully. Of the two formulations, PLA-PEG-PLA experimentally exhibited better results, with an initial burst release of 17.5%, followed by a slow, constant release of the encapsulated drug up to 80%. PLA-PEG-PLA-CUR showed a significant increase in cell death in MCF-7 cancer cells (IC50 = 23.01 ± 0.85 µM) based on the MTT assay. These data were consistent with gene expression studies of Bax, Bcl2, and hTERT, which showed that PLA-PEG-PLA-CUR induced apoptosis more efficiently in these cells. Through the integration of nano-informatics and in vitro approaches, our study determined that PLA-PEG-PLA-CUR is an optimal system for delivering curcumin to inhibit cancer cells. Full article
(This article belongs to the Special Issue Biopolymers for Medicinal, Macromolecules, and Food Applications III)
Show Figures

Figure 1

14 pages, 5491 KiB  
Article
New Polyvinyl Alcohol/Succinoglycan-Based Hydrogels for pH-Responsive Drug Delivery
by Jae-pil Jeong, Kyungho Kim, Jaeyul Kim, Yohan Kim and Seunho Jung
Polymers 2023, 15(14), 3009; https://doi.org/10.3390/polym15143009 - 11 Jul 2023
Cited by 5 | Viewed by 1912
Abstract
We fabricated new hydrogels using polyvinyl alcohol (PVA) and succinoglycan (SG) directly isolated and obtained from Sinorhizobium meliloti Rm 1021 via the freeze–thaw method. Both the composition of the hydrogels and the freeze–thaw cycles were optimized to maximize the swelling ratio for the [...] Read more.
We fabricated new hydrogels using polyvinyl alcohol (PVA) and succinoglycan (SG) directly isolated and obtained from Sinorhizobium meliloti Rm 1021 via the freeze–thaw method. Both the composition of the hydrogels and the freeze–thaw cycles were optimized to maximize the swelling ratio for the preparation of the PVA/SG hydrogels. During the optimization process, the morphology and conformational change in the hydrogel were analyzed by scanning electron microscopy, rheological measurements, and compressive tests. An optimized hydrogel with a maximum swelling ratio of 17.28 g/g was obtained when the composition of PVA to SG was 50:50 (PVA/SG 50/50) and the total number of freeze–thaw cycles was five. The PVA/SG 50/50 hydrogel had the largest pore with 51.24% porosity and the highest cross-over point (28.17%) between the storage modulus (G′) and the loss modulus (G″). The PVA/SG 50/50 hydrogel showed improved thermal stability owing to its interaction with thermally stable SG chains. The improvement in the thermal stability was confirmed by thermogravimetric analysis and differential scanning calorimetry. In addition, the PVA/SG 50/50 hydrogel showed differential drug release according to the corresponding pH under acidic conditions of pH 1.2 and slightly basic conditions of pH 7.4. Furthermore, the cell viability test on the HEK-293 cell line for that hydrogel demonstrated that the PVA/SG 50/50 hydrogel was non-toxic and biocompatible. Therefore, this hydrogel could be a potential scaffold capable of pH-responsive drug delivery for chronic wound dressing applications. Full article
(This article belongs to the Special Issue Biopolymers for Medicinal, Macromolecules, and Food Applications III)
Show Figures

Graphical abstract

24 pages, 7774 KiB  
Article
Design, Synthesis, and Characterization of Novel Bis-Uracil Chitosan Hydrogels Modified with Zinc Oxide Nanoparticles for Boosting Their Antimicrobial Activity
by Rana A. Alharbi, Fahad M. Alminderej, Nouf F. Al-Harby, Noura Y. Elmehbad and Nadia A. Mohamed
Polymers 2023, 15(4), 980; https://doi.org/10.3390/polym15040980 - 16 Feb 2023
Cited by 17 | Viewed by 2090
Abstract
A new series of hydrogels was successfully prepared by incorporating various substituted bisuracil (R-BU) linkages between chitosan Schiff’s base chains (R-BU-CsSB) and between chitosan chains (R-BU-Cs). After protection of the amino groups of chitosan by benzaldehyde, yielding chitosan Schiff’s base (CsSB), the reaction [...] Read more.
A new series of hydrogels was successfully prepared by incorporating various substituted bisuracil (R-BU) linkages between chitosan Schiff’s base chains (R-BU-CsSB) and between chitosan chains (R-BU-Cs). After protection of the amino groups of chitosan by benzaldehyde, yielding chitosan Schiff’s base (CsSB), the reaction with epichlorohydrin was confined on the -OH on C6 to produce epoxy chitosan Schiff’s base (ECsSB), which was reacted with R-BU to form R-BU-CsSB hydrogels, and finally, the bioactive amino groups of chitosan were restored to obtain R-BU-Cs hydrogels. Further, some R-BU-Cs-based ZnO nanoparticle (R-BU-Cs/ZnONPs) composites were also prepared. Appropriate techniques such as elemental analysis, FTIR, XRD, SEM, and EDX were used to verify their structures. Their inhibition potency against all the tested microbes were arranged as: ZnONPs bio-composites > R-BU-Cs hydrogels > R-BU-CsSB hydrogels > Cs. Their inhibition performance against Gram-positive bacteria was better than Gram-negative ones. Their minimum inhibitory concentration (MIC) values decreased as a function of the negative resonance effect of the substituents in the aryl ring of R-BU linkages in the hydrogels. Compared with Vancomycin, the ZnONPs bio-composites showed superior inhibitory effects against most of the tested Gram-negative bacteria, all inspected Gram-positive ones, and all investigated fungi. Full article
(This article belongs to the Special Issue Biopolymers for Medicinal, Macromolecules, and Food Applications III)
Show Figures

Graphical abstract

Review

Jump to: Research

20 pages, 2367 KiB  
Review
Natural Extracts and Their Applications in Polymer-Based Active Packaging: A Review
by Jiawei Li, Hui Sun and Yunxuan Weng
Polymers 2024, 16(5), 625; https://doi.org/10.3390/polym16050625 - 25 Feb 2024
Cited by 4 | Viewed by 1591
Abstract
At a time when food safety awareness is increasing, attention is paid not only to food and additives but also to packaging materials. Most current food packaging is usually made of traditional petroleum-based polymeric materials, which are not biodegradable and have adverse effects [...] Read more.
At a time when food safety awareness is increasing, attention is paid not only to food and additives but also to packaging materials. Most current food packaging is usually made of traditional petroleum-based polymeric materials, which are not biodegradable and have adverse effects on the environment and health. In this context, the development of new non-toxic and biodegradable materials for extending the best-before date of food is receiving increasing attention. In addition, additives in packaging materials may migrate outward, resulting in contact with food. For this reason, additives are also seen as a transition from synthetic additives to natural extracts. Active extracts from animals and plants having good antioxidant and antibacterial properties are also beneficial for human health. It is indisputable that active extracts are ideal substitutes for synthetic additives. Polymer packaging materials combined with active extracts not only maintain their original mechanical and optical properties and thermal stability but also endow polymers with new functions to extend the shelf life of food. This review paper provides an overview of this promising natural extract-containing polymer-based active packaging, with a focus on plant essential oils (containing phenolics, monoterpenes, terpene alcohols, terpene ketones, and aldehydes), pigments (procyanidins), vitamins (vitamin B), and peptides (nisin). In particular, this paper covers the research progress of such active extracts, in single or compound forms, combined with diverse polymers (mostly biopolymers) for food packaging applications with particular focus on the antioxidant and antibacterial properties of packaging materials. Full article
(This article belongs to the Special Issue Biopolymers for Medicinal, Macromolecules, and Food Applications III)
Show Figures

Graphical abstract

Back to TopTop