polymers-logo

Journal Browser

Journal Browser

Advanced Polymeric Materials for Medical Applications

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Composites and Nanocomposites".

Deadline for manuscript submissions: 25 November 2025 | Viewed by 2179

Special Issue Editor


E-Mail Website
Guest Editor
School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
Interests: nanocomposites; polymeric materials; organic–inorganic hybrid nanomaterials; molecular imaging; drug delivery; targeting molecular probe

Special Issue Information

Dear Colleagues,

Polymers and their composites are some of the most widely used materials in the field of biomedical sciences due to their vast potential for loading various functional moieties, thereby enabling their medical applications. These biofunctional polymers exhibit unique shapes, various physical–chemical properties, bioadhesion, tissue guiding, biocompatibility, biospecifically binding, biodegradability, and biological activity, making them useful in different biomedical applications. The continuous advancement of medical and pharmaceutical technology has boosted the research of novel and intelligent polymeric materials with outstanding properties. This makes the construction and preparation of polymer materials with specific functions particularly crucial.

This Special Issue aims to provide a comprehensive presentation on advanced design methods, synthetic approaches to polymeric materials and their medical applications, especially addressing fields such as drug delivery, gene transfection, tissue engineering, biosensing, biomedical imaging and diagnostics, disease detection, and therapy. Both original articles and reviews are welcome.

Dr. Jingyi Zhu
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biofunctional polymer
  • functional polymeric materials and devices
  • polymeric-based vaccine
  • drug delivery
  • molecular imaging
  • gene transfection
  • tissue engineering
  • biosensing
  • biomedical imaging and diagnostics
  • disease detection and therapy

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

24 pages, 12348 KiB  
Article
Copper(II)-Complexed Polyethylenimine-Entrapped Gold Nanoparticles Enable Targeted CT/MR Imaging and Chemodynamic Therapy of Tumors
by Lingxiu He, Na Liu, Risong Pan and Jingyi Zhu
Polymers 2025, 17(3), 423; https://doi.org/10.3390/polym17030423 - 6 Feb 2025
Viewed by 714
Abstract
Transition-metal ion copper(II) (Cu(II)) has drawn increasing attention as a small-molecular cancer theranostic agent. However, delivering a sufficient dosage of Cu(II) to the tumor site and integrating multiple imaging modalities to achieve precise and effective cancer theranostics remains a critical challenge. Herein, an [...] Read more.
Transition-metal ion copper(II) (Cu(II)) has drawn increasing attention as a small-molecular cancer theranostic agent. However, delivering a sufficient dosage of Cu(II) to the tumor site and integrating multiple imaging modalities to achieve precise and effective cancer theranostics remains a critical challenge. Herein, an emerging Cu(II)-based nanocomposite has been synthesized for targeted tumor computed tomography (CT)/magnetic resonance (MR) dual-mode imaging and chemodynamic therapy (CDT). Briefly, 2-picolinic acid (PA-COOH), polyethylene glycol (PEG)-linked folic acid (FA), and fluorescein isothiocyanate (FI) were sequentially conjugated with polyethylenimine (PEI.NH2) and then in situ fabrication of gold nanoparticles (Au NPs) occurred within the PEI.NH2 internal cavity. After acetylation of PEI.NH2 terminal amines and Cu(II) complexation, the Cu(II)-based nanocomposites FA-Au/Cu(II) PENPs with a mean diameter of 2.87 nm were generated. The synthesized FA-Au/Cu(II) PENPs showed favorable stability of colloidal dispersion, sustainable Cu(II) release properties in a pH-dependent manner, and Fenton-like catalytic activity specifically. With the FA-mediated targeting pathway, FA-Au/Cu(II) PENPs can specifically accumulate in cancer cells with high expression of FA receptors. Meanwhile, the complementary CT/MR dual-mode imaging in vitro and in vivo can be afforded by FA-Au/Cu(II) PENPs based on the excellent X-ray attenuation properties of Au NPs and the applicable r1 relaxivity (0.7378 mM−1s−1) of Cu(II). Notably, the Cu(II)-mediated CDT mechanism enables FA-Au/Cu(II) PENPs to elicit the generation of toxic hydroxyl radicals (·OH), depletion of glutathione (GSH), promotion of lipid peroxidation (LPO), and induction of cancer cell apoptosis in vitro, and further demonstrates remarkable anti-tumor efficacy in a xenograft tumor model. With the illustrated targeted theranostic capacity of FA-Au/Cu(II) PENPs towards tumors, this Cu(II)-based nanocomposite paradigm inspires the construction of advanced theranostic nanoplatforms incorporating alternative transition metal ions. Full article
(This article belongs to the Special Issue Advanced Polymeric Materials for Medical Applications)
Show Figures

Figure 1

23 pages, 10645 KiB  
Article
Poly(vinyl alcohol) Nanocomposites Reinforced with CuO Nanoparticles Extracted by Ocimum sanctum: Evaluation of Wound-Healing Applications
by Shrishail Pattadakal, Vanita Ghatti, Sharanappa Chapi, Vidya G., Yogesh Kumar Kumarswamy, M. S. Raghu, Vidyavathi G. T., Nagaraj Nandihalli and Deepak R. Kasai
Polymers 2025, 17(3), 400; https://doi.org/10.3390/polym17030400 - 2 Feb 2025
Viewed by 1022
Abstract
This study focused on the synthesis of plant-mediated copper-oxide nanoparticles (OsCuONPs) via the sol–gel technique and the fabrication of OsCuONP-infused PVA composite films (POsCuONPs) utilizing the solvent casting method for wound-healing applications. The prepared OsCuONPs and nanocomposite films were characterized using UV–visible spectra, [...] Read more.
This study focused on the synthesis of plant-mediated copper-oxide nanoparticles (OsCuONPs) via the sol–gel technique and the fabrication of OsCuONP-infused PVA composite films (POsCuONPs) utilizing the solvent casting method for wound-healing applications. The prepared OsCuONPs and nanocomposite films were characterized using UV–visible spectra, FTIR, SEM, XRD, TGA, water contact-angle (WCA) measurements, and a Universal testing machine (UTM) for mechanical property measurements. The UV and FTIR tests showed that OsCuONPs were formed and were present in the PVA composite film. Moreover, the mechanical study confirmed that there is an increase in the tensile strength (TS) and Young’s modulus (Ym) with 21.75 MPa to 32.50 MPa for TS and 24.80 MPa to 1128.36 MPa for Ym, and a decrease in the % elongation at break (Eb) (394.32 to 75.6). The TGA and WCA study results demonstrated that PVA films containing OsCuONPs are more stable when subjected to high temperatures and demonstrate a decreased hydrophilicity (60.89° to 89.62°). The cytotoxicity and hemolysis tests showed that the CuONPs-3 containing composite films (PVA/OsCuONPs with a wt. ratio of 1.94/0.06) are safe to use, have a good level of cell viability, and do not break down blood. This is true even at high concentrations. The study also discovered that cells moved considerably in 12 and 24 h (13.12 to 19.26 for OsCuONPs and 312.53 to 20.60 for POsCuONPs), suggesting that 60% of the gaps were filled. Therefore, the fabricated POsCuONP nanocomposites may serve as a promising option for applications in wound healing. Full article
(This article belongs to the Special Issue Advanced Polymeric Materials for Medical Applications)
Show Figures

Graphical abstract

Back to TopTop