Special Issue "Innovative Functional Textiles"

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Applications".

Deadline for manuscript submissions: 10 January 2020.

Special Issue Editors

Dr. Kyung Wha Oh
E-Mail Website
Guest Editor
Chung-Ang University, Department of Fashion Design, Seoul, South Korea
Interests: bio-based elastomers; self-healing textiles; photothermal and antibacterial textiles
Dr. Taek Seung Lee
E-Mail Website
Guest Editor
Chungnam National University, Department of Organic Materials Engineering, Daejeon, South Korea
Tel. +82-42-821-6615
Interests: organic materials chemistry; organic materials for electronics and photonics

Special Issue Information

Dear Colleagues,

Thousands of years have passed since the history of textiles and fibers began, starting with animal skins and plants. During the past seventy years, the fiber and textile industries have undergone revolutionary changes and seen the most significant innovations in their histories. The most important innovations have come with the advent of the information industry and biotechnology industry. Fiber- and textile-based structures are highly desirable for human wears that are expected to be light-weight, durable, flexible, and conformable. Well-established and cost-effective fiber and textile production processes enable these materials to convert into one-, two-, and three-dimensional fiber assemblies (yarns, fabrics, and products). The fusion of textiles and information technology or biotechnology has the potential to combine the positive attributes of each technology with the flexible, wearable, and continuous nature of fiber assemblies. Thus, the hierarchical nature of the fibrous structures makes the application of electronically- and biologically-relevant fields suitable.

This Special Issue, “Innovative Functional Textiles”, aims to be a collection of high-quality original/review papers focusing on recent progress in (a) smart and interactive textiles/electronic polymers and textiles, (b) shape memory textiles, (c) sustainable materials and processing, (d) high performance engineered textiles/protective textiles, (e) nano- and micro- fibers and assembles, (f) biomedical polymers and textiles, (g) photonic textiles, (h) thermal and moisture regulated textiles, (i) geotextiles, (j) functional textile finish, and (k) characterization of functional textiles.

Other potentially interesting topics are also welcome and not limited to the above lists, if the intended submissions are generally in the category of functional textiles.

Dr. Kyung Wha Oh
Dr. Taek Seung Lee
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1500 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Smart electronic polymers and textiles
  • Sustainable textile materials and processing
  • Engineered textiles
  • Nano- and micro-fibers and assembles
  • Biomedical polymers and textiles
  • Photonic textiles
  • Thermal and moisture regulated textiles
  • Functional textile finish and characterization

Published Papers (20 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Open AccessArticle
Improvement of the Rubbing Fastness of Cotton Fiber in Indigo/Silicon Non-Aqueous Dyeing Systems
Polymers 2019, 11(11), 1854; https://doi.org/10.3390/polym11111854 (registering DOI) - 11 Nov 2019
Abstract
In order to solve the poor rubbing fastness of dyed cotton fiber in the indigo/silicon non-aqueous dyeing system, the process parameters of the silicon non-aqueous dyeing system were optimized. Dyed cotton fiber was post-treated to achieve the optimum dyeing conditions for obtaining a [...] Read more.
In order to solve the poor rubbing fastness of dyed cotton fiber in the indigo/silicon non-aqueous dyeing system, the process parameters of the silicon non-aqueous dyeing system were optimized. Dyed cotton fiber was post-treated to achieve the optimum dyeing conditions for obtaining a better rubbing fastness. Meanwhile, the dyeing performance of cotton fiber in a traditional water bath and silicon non-aqueous dyeing system was compared. The results showed that the rubbing fastness of dyed cotton fiber in the silicon non-aqueous dyeing system (one dyeing) was lower than that of traditional water bath (twelve cycles), although the color depth of dyed cotton fiber was deeper. For obtaining a good rubbing fastness, the optimum temperature was about 70 °C and the optimal dyeing cycle was one. Moreover, fixing agents can significantly improve the rubbing fastness of dyed cotton fiber. Especially, cationic waterborne polyurethane had an optimal fixing effect on the dyed cotton fiber. Soft finishing would weaken the effect of fixing finishing on the dyed cotton fiber, but the softener can significantly improve the handle of dyed cotton fiber. Full article
(This article belongs to the Special Issue Innovative Functional Textiles)
Show Figures

Graphical abstract

Open AccessArticle
Developing Fall-impact Protection Pad with 3D Mesh Curved Surface Structure using 3D Printing Technology
Polymers 2019, 11(11), 1800; https://doi.org/10.3390/polym11111800 - 01 Nov 2019
Abstract
In this study, we present the development of fall-impact protection pads for elderly people using three-dimensional (3D) printing technology. To develop fall-impact protection clothing, it is important to maintain the functionality of the protection pad while ensuring that its effectiveness and appearance remain [...] Read more.
In this study, we present the development of fall-impact protection pads for elderly people using three-dimensional (3D) printing technology. To develop fall-impact protection clothing, it is important to maintain the functionality of the protection pad while ensuring that its effectiveness and appearance remain optimal in the process of inserting it. Therefore, this study explores the benefit of exploiting 3D scan data of the human body using 3D printing technology to develop a fall-impact protection pad that is highly suited to the human body shape. The purpose of this study was to present a 3D modeling process for creating curved protective pads comprising a hexagonal mesh with a spacer fabric structure and to verify the impact protection performance by printing curved pads. To this end, we set up a section that includes pads in the 3D human body scan data and extracted body surface information to be applied in the generation of the pad surface. The sheet-shaped hexagonal mesh structure was cut and separated according to the pad outline, and then deformed according to the curved surface of the human body. The pads were printed, and their protection performance was evaluated; a 79.2–81.8% reduction in impact force was observed compared to similar cases in which the pads were not used. Full article
(This article belongs to the Special Issue Innovative Functional Textiles)
Show Figures

Graphical abstract

Open AccessArticle
Photothermal Polymer Nanocomposites of Tungsten Bronze Nanorods with Enhanced Tensile Elongation at Low Filler Contents
Polymers 2019, 11(11), 1740; https://doi.org/10.3390/polym11111740 - 24 Oct 2019
Abstract
We present polymer nanocomposites of tungsten bronze nanorods (TBNRs) and ethylene propylene diene monomers (EPDM). The combination of these components allows the simultaneous enhancement in the mechanical and photothermal properties of the composites at low filler contents. The as-synthesized TBNRs had lengths and [...] Read more.
We present polymer nanocomposites of tungsten bronze nanorods (TBNRs) and ethylene propylene diene monomers (EPDM). The combination of these components allows the simultaneous enhancement in the mechanical and photothermal properties of the composites at low filler contents. The as-synthesized TBNRs had lengths and diameters of 14.0 ± 2.4 nm and 2.5 ± 0.5 nm, respectively, and were capped with oleylamine, which has a chemical structure similar to EPDM, making the TBNRs compatible with the bulk EPDM matrix. The TBNRs absorb a wide range of near-infrared light because of the sub-band transitions induced by alkali metal doping. Thus, the nanocomposites of TBNRs in EPDM showed enhanced photothermal properties owing to the light absorption and subsequent heat emission by the TBNRs. Noticeably, the nanocomposite with only 3 wt% TBNRs presented significantly enhanced tensile strain at break, in comparison with those of pristine EPDM, nanocomposites with 1 and 2 wt % TBNRs, and those with tungsten bronze nanoparticles, because of the alignment of the nanorods during tensile elongation. The photothermal and mechanical properties of these nanocomposites make them promising materials for various applications such as in fibers, foams, clothes with cold weather resistance, patches or mask-like films for efficient transdermal delivery upon heat generation, and photoresponsive surfaces for droplet transport by the thermocapillary effect in microfluidic devices and microengines. Full article
(This article belongs to the Special Issue Innovative Functional Textiles)
Show Figures

Graphical abstract

Open AccessArticle
Blowing Properties and Functionality of Thermoplastic Polyester Film Using Thermally Expandable Microcapsules
Polymers 2019, 11(10), 1652; https://doi.org/10.3390/polym11101652 - 11 Oct 2019
Abstract
Blowing film was prepared using a polyester elastomer with thermally expandable microcapsules to investigate its blowing properties and functionality. Film with 11% microcapsule contents showed the lowest specific gravity and the highest blowing efficiency. However, the collapse and merging of blowing cells with [...] Read more.
Blowing film was prepared using a polyester elastomer with thermally expandable microcapsules to investigate its blowing properties and functionality. Film with 11% microcapsule contents showed the lowest specific gravity and the highest blowing efficiency. However, the collapse and merging of blowing cells with 11% microcapsule contents was found by SEM. Therefore, film with 9% microcapsule contents was shown to have better blowing and cell stability than that of film with 11% microcapsule contents. Tensile strength and elongation decreased by increasing microcapsule contents. Film curl and film shrinkage properties were unaffected by microcapsule contents. Water vapor permeability and hydrostatic pressure was decreased by increasing microcapsule contents. Full article
(This article belongs to the Special Issue Innovative Functional Textiles)
Show Figures

Graphical abstract

Open AccessArticle
Electrical Properties of Silver-Attached Amine Functionalized Carbon Black/Polyethylene Terephthalate Fibers Prepared by Melt-Spinning
Polymers 2019, 11(10), 1611; https://doi.org/10.3390/polym11101611 - 03 Oct 2019
Abstract
In this study, amine functionalized carbon black (ABCB) was synthesized using 4-aminobenzoic acid in a phosphoric acid (PPA)/phosphorus pentoxide (P2O5) medium, and silver-attached carbon black (Ag-ABCB) was prepared by reducing AgNO3 with NaBH4 in the presence of [...] Read more.
In this study, amine functionalized carbon black (ABCB) was synthesized using 4-aminobenzoic acid in a phosphoric acid (PPA)/phosphorus pentoxide (P2O5) medium, and silver-attached carbon black (Ag-ABCB) was prepared by reducing AgNO3 with NaBH4 in the presence of ABCB in ethanol. Elemental, thermogravimetric, and Fourier transform-infrared analyses showed that carbon black (CB) had a well-functionalized 4-aminobenzoic acid. In addition, X-ray photoelectron spectroscopy and X-ray diffraction were used to examine the crystal structure of Ag nanoparticles. Conductive fibers were prepared by melt-spinning using ABCB, Ag-ABCB as a conductive filler, and polyethylene terephthalate (PET) as a polymer matrix. Results confirmed that the fiber that had Ag-ABCB as a conductive filler exhibited the best electrical conductivity. The dispersibility and morphology of the conductive filler in the PET matrix were confirmed through scanning electron microscopy analysis, and Ag-ABCB was the most uniformly dispersed filler in the PET matrix, with good structure. Full article
(This article belongs to the Special Issue Innovative Functional Textiles)
Show Figures

Graphical abstract

Open AccessArticle
Preparation and Properties of Carbon Fiber/Carbon Nanotube Wet-Laid Composites
Polymers 2019, 11(10), 1597; https://doi.org/10.3390/polym11101597 - 30 Sep 2019
Abstract
In this study, carbon nanotubes (CNTs) were introduced into carbon fiber (CF) wet-laid composites as functional nano-fillers to fabricate multi-functional composites with improved mechanical, electrical, and thermal properties. It was considered that the wet-laid process was most suitable in order to introduce filler [...] Read more.
In this study, carbon nanotubes (CNTs) were introduced into carbon fiber (CF) wet-laid composites as functional nano-fillers to fabricate multi-functional composites with improved mechanical, electrical, and thermal properties. It was considered that the wet-laid process was most suitable in order to introduce filler into brittle and rigid carbon fiber substrates, and we established the conditions of the process that could impart dispersibility and bonding between the fibers. We introduced polyamide 6 (PA6) short fiber, which is the same polymeric material as the stacking film, into carbon fiber and CNT mixture to enhance the binding interactions between carbon fiber and CNTs. Various types of CNT-reinforced carbon fiber wet-laid composites with PA6 short fibers were prepared, and the morphology, mechanical and electrical properties of the composites were estimated. As CNT was added to the carbon fiber nonwoven, the electrical conductivity increased by 500% but the tensile strength decreased slightly. By introducing short fibers of the same material as the matrix between CNT–CF wet-laid nonwovens, it was possible to find optimum conditions to increase the electrical conductivity while maintaining mechanical properties. Full article
(This article belongs to the Special Issue Innovative Functional Textiles)
Show Figures

Graphical abstract

Open AccessArticle
Immobilization of Trypsin from Porcine Pancreas onto Chitosan Nonwoven by Covalent Bonding
Polymers 2019, 11(9), 1462; https://doi.org/10.3390/polym11091462 - 06 Sep 2019
Abstract
The present study deals with the potential application of chitosan nonwoven for biomedical textiles based on enzyme immobilization. For this, chitosan nonwoven was first cross-linked with glutaraldehyde to introduce aldehyde groups at optimal conditions. To immobilize the enzyme trypsin onto glutaraldehyde-pre-activated chitosan nonwoven, [...] Read more.
The present study deals with the potential application of chitosan nonwoven for biomedical textiles based on enzyme immobilization. For this, chitosan nonwoven was first cross-linked with glutaraldehyde to introduce aldehyde groups at optimal conditions. To immobilize the enzyme trypsin onto glutaraldehyde-pre-activated chitosan nonwoven, several parameters such as pH, enzyme concentration, and reaction times were investigated. In addition, the pH, thermal stability, storage stability, and reusability of immobilized trypsin were examined. We found that the optimal immobilization conditions for trypsin were pH 8.5, enzyme concentration of 8% (owf), and treatment time of 30 min. Trypsin was immobilized at 25 °C efficiently. The immobilized trypsin showed lower pH stability and better thermal stability than free trypsin. The immobilized trypsin showed 50% of its initial activity after being used 15 times and 80% of that after 20 days of storage at 4 °C. SEM analysis also confirmed that trypsin was immobilized on chitosan nonwoven. Full article
(This article belongs to the Special Issue Innovative Functional Textiles)
Show Figures

Graphical abstract

Open AccessArticle
Comparative Study of Triboelectric Nanogenerators with Differently Woven Cotton Textiles for Wearable Electronics
Polymers 2019, 11(9), 1443; https://doi.org/10.3390/polym11091443 - 03 Sep 2019
Abstract
A comparative study of the electrical performance of triboelectric nanogenerators (TENGs) with plain- and 2/1 twill-woven cotton textiles was conducted. Furthermore, the microstructures of the cotton fiber surfaces were examined to understand the fundamental mechanical interaction among the cotton fibers in the TENGs. [...] Read more.
A comparative study of the electrical performance of triboelectric nanogenerators (TENGs) with plain- and 2/1 twill-woven cotton textiles was conducted. Furthermore, the microstructures of the cotton fiber surfaces were examined to understand the fundamental mechanical interaction among the cotton fibers in the TENGs. The TENG with 2/1 twill-woven cotton textiles exhibited higher output voltages compared to that with plain-woven cotton textiles. The difference in the output voltage between the two types of TENGs resulted from the difference in triboelectric charge generation between the constituent cotton textiles. The higher output voltage of the TENG with 2/1 twill-woven cotton textiles was attributed to the higher density in triboelectric interactions among the cotton fiber molecules. Full article
(This article belongs to the Special Issue Innovative Functional Textiles)
Show Figures

Graphical abstract

Open AccessArticle
Evaluation of Thermal Properties of 3D Spacer Technical Materials in Cold Environments using 3D Printing Technology
Polymers 2019, 11(9), 1438; https://doi.org/10.3390/polym11091438 - 02 Sep 2019
Abstract
Novel materials have been recently developed for coping with various environmental factors. Generally, to improve the thermal comfort to humans in cold environments, securing an air layer is important. Therefore, this study analyzed the thermal properties of 3D spacer technical materials, 3D printed [...] Read more.
Novel materials have been recently developed for coping with various environmental factors. Generally, to improve the thermal comfort to humans in cold environments, securing an air layer is important. Therefore, this study analyzed the thermal properties of 3D spacer technical materials, 3D printed using thermoplastic polyurethane, according to the structural changes. Four 3D spacer technical material structures were designed with varying pore size and thickness. These samples were moved into a cold climate chamber (temperature 5 ± 1 °C, relative humidity (60 ± 5)%, wind velocity ≤0.2 m/s) and placed on a heating plate set to 30 °C. The surface and internal temperatures were measured after 0, 10, 20, and 30 min and then 10 min after turning off the heating plate. When heat was continuously supplied, the 3D spacer technical material with large pores and a thick air layer showed superior insulation among the materials. However, when no heat was supplied, the air gap thickness dominantly affected thermal insulation, regardless of the pore size. Hence, increasing the air gap is more beneficial than increasing the pore size. Notably, we found that the air gap can increase insulation efficiency, which is of importance to the new concept of 3D printing an interlining. Full article
(This article belongs to the Special Issue Innovative Functional Textiles)
Show Figures

Graphical abstract

Open AccessArticle
Complementary Assessment of Commercial Photoluminescent Pigments Printed on Cotton Fabric
Polymers 2019, 11(7), 1216; https://doi.org/10.3390/polym11071216 - 20 Jul 2019
Abstract
The presented study focuses on photoluminescent pigments applied on cotton fabric by a screen-printed procedure using polydimethylsiloxane (PDMS) as a binder. Microscopic data depicts irregular shapes and relatively wide size distribution (3–80 µm) of pigments. Regarding composition, the Energy-Dispersive X-ray (EDX) and Fourier [...] Read more.
The presented study focuses on photoluminescent pigments applied on cotton fabric by a screen-printed procedure using polydimethylsiloxane (PDMS) as a binder. Microscopic data depicts irregular shapes and relatively wide size distribution (3–80 µm) of pigments. Regarding composition, the Energy-Dispersive X-ray (EDX) and Fourier Transform Infrared (FTIR) spectroscopy data complement findings suggesting the presence of Eu-doped strontium aluminate in the yellow-green, calcium aluminate in the violet pigment, and metal oxides in the blue pigment. The optical properties of pigment-enriched PDMS-coated cotton fabric were assessed and reflectance intensity was found to be concentration-dependent only in the blue pigment. The luminescence decay data show that luminescence intensity decreased with the reduction of pigment concentration in the following order, yellow-green > blue > violet pigments. Relying on absorption and emission data of powdered pigments, the confocal microscopy enables visualization of the pigments’ distribution within a 3D image projection. This identifies the most homogeneous distribution in the case of the blue pigment, as well as the presence of a continuous fluorescing signal in the z projection when 5% pigment was used. This was, for the first time, presented as a powerful tool for non-destructive visualization of photoluminescent pigments’ spatial distribution when printed on textile (cotton) fabric. Finally, the photoluminescent PDMS coating demonstrates high washing and abrasion resistance, contributing to overall functionality of printed cotton fabrics when commercial types of pigments are applied. Full article
(This article belongs to the Special Issue Innovative Functional Textiles)
Show Figures

Graphical abstract

Open AccessArticle
Electroactive Textile Actuators for Breathability Control and Thermal Regulation Devices
Polymers 2019, 11(7), 1199; https://doi.org/10.3390/polym11071199 - 18 Jul 2019
Abstract
Smart fabrics offer the potential for a new generation of soft robotics and wearable technologies through the fusion of smart materials, textiles and electrical circuitries. Conductive and stretchable textiles have inherent compliance and low resistance that are suitable for driving artificial muscle actuators [...] Read more.
Smart fabrics offer the potential for a new generation of soft robotics and wearable technologies through the fusion of smart materials, textiles and electrical circuitries. Conductive and stretchable textiles have inherent compliance and low resistance that are suitable for driving artificial muscle actuators and are potentially safer electrode materials for soft actuation technologies. We demonstrate how soft electroactive actuating structures can be designed and fabricated from conducting textiles. We first quantitatively analyse a range of stretchable conductive textiles for dielectric elastomer actuators (DEAs). We found that conductive-knit textiles are more suitable for unidirectional DEA applications due to the largest difference (150%) in principle strain axes, whereas isotropic textiles are more suited to bidirectional DEA applications due to the smallest (11.1%) principle strain difference. Finally, we demonstrate controllable breathability through a planar e-textile DEA-driven skin and show thermal regulation in a wearable prototype that exploits soft actuation and kirigami. Full article
(This article belongs to the Special Issue Innovative Functional Textiles)
Show Figures

Graphical abstract

Open AccessArticle
Integration of Polypyrrole Electrode into Piezoelectric PVDF Energy Harvester with Improved Adhesion and Over-Oxidation Resistance
Polymers 2019, 11(6), 1071; https://doi.org/10.3390/polym11061071 - 21 Jun 2019
Abstract
Smart textiles for wearable devices require flexibility and a lightweight, so in this study, a soft polypyrrole (PPy) electrode system was integrated into a piezoelectric polyvinylidenefluoride (PVDF) energy harvester. The PVDF energy harvester integrated with a PPy electrode had the piezoelectric output voltage [...] Read more.
Smart textiles for wearable devices require flexibility and a lightweight, so in this study, a soft polypyrrole (PPy) electrode system was integrated into a piezoelectric polyvinylidenefluoride (PVDF) energy harvester. The PVDF energy harvester integrated with a PPy electrode had the piezoelectric output voltage of 4.24–4.56 V, while the PVDF energy harvester with an additional aluminum-foil electrode exhibited 2.57 V. Alkaline treatment and chemical vapor deposition with n-dodecyltrimethoxysilane (DTMS) were employed to improve the adhesion between the PVDF and PPy and the resistance to over-oxidation in aqueous solutions. The PVDF film modified by an alkaline treatment could have the improved adhesion via the introduction of polar functional groups to its surface, which was confirmed by the ultrasonication. The surface hydrophobicity of the PPy electrode was enhanced by the DTMS coating, resulting in the improvement of the resistance to over-oxidation with a water contact angle of 111°. Even with the hydrophobic coating, the electrodes remained electroconductive and continued to transfer an electric charge, maintaining the piezoelectricity of the PVDF film. The developed electrode-integrated energy harvester is expected to be applied to smart textiles because it offers the advantages of efficient piezoelectric generation, flexibility, and durability. Full article
(This article belongs to the Special Issue Innovative Functional Textiles)
Show Figures

Graphical abstract

Open AccessArticle
In-Plane Behavior of Auxetic Non-Woven Fabric Based on Rotating Square Unit Geometry under Tensile Load
Polymers 2019, 11(6), 1040; https://doi.org/10.3390/polym11061040 - 12 Jun 2019
Abstract
This paper reports the auxetic behavior of modified conventional non-woven fabric. The auxetic behavior of fabric was achieved by forming rotating square unit geometry with a highly ordered pattern of slits by laser cutting. Two commercial needle-punched non-woven fabric used as lining and [...] Read more.
This paper reports the auxetic behavior of modified conventional non-woven fabric. The auxetic behavior of fabric was achieved by forming rotating square unit geometry with a highly ordered pattern of slits by laser cutting. Two commercial needle-punched non-woven fabric used as lining and the reinforcement fabric for the footwear industry were investigated. The influence of two rotating square unit sizes was analyzed for each fabric. The original and modified fabric samples were subjected to quasi-static tensile load by using the Tinius Olsen testing machine to observe the in-plane mechanical properties and deformation behavior of tested samples. The tests were recorded with a full high-definition (HD) digital camera and the video recognition technique was applied to determine the Poisson’s ratio evolution during testing. The results show that the modified samples exhibit a much lower breaking force due to induced slits, which in turn limits the application of such modified fabric to low tensile loads. The samples with smaller rotating cell sizes exhibit the highest negative Poisson’s ratio during tensile loading through the entire longitudinal strain range until rupture. Non-woven fabric with equal distribution and orientation of fibers in both directions offer better auxetic response with a smaller out-of-plane rotation of rotating unit cells. The out-of-plane rotation of unit cells in non-homogenous samples is higher in machine direction. Full article
(This article belongs to the Special Issue Innovative Functional Textiles)
Show Figures

Figure 1

Open AccessArticle
Characterization of Electrical Heating Textile Coated by Graphene Nanoplatelets/PVDF-HFP Composite with Various High Graphene Nanoplatelet Contents
Polymers 2019, 11(5), 928; https://doi.org/10.3390/polym11050928 - 27 May 2019
Abstract
We prepared a horseshoe-pattern type electrical heating textile that was coated with high graphene nanoplatelet (GNP) content (32 wt% to 64 wt%) of graphene nanoplatelet/poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) composite. Silver-coated conductive yarn is used as electrode in the sample to improve its [...] Read more.
We prepared a horseshoe-pattern type electrical heating textile that was coated with high graphene nanoplatelet (GNP) content (32 wt% to 64 wt%) of graphene nanoplatelet/poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) composite. Silver-coated conductive yarn is used as electrode in the sample to improve its flexibility and applicability as wearable textile. These graphene nanoplatelet/PVDF-HFP coated samples with various high-contents of graphene were characterized using scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD), sheet resistance analysis, and electrical heating performance analysis. Graphene nanoplatelet/PVDF-HFP coated cotton fabric improved the crystallinity and thermal stability with increasing thw high-content of GNP. With an increasing of the high-content of graphene nanoplatelet in the PVDF-HFP composite solution, the sheet resistance of samples tended to gradually decrease. That of, 64 wt% graphene nanoplatelet/PVDF-HFP composite coated sample (64 GR/cotton) was 44 Ω/sq. The electrical heating performance of graphene nanoplatelet/PVDF-HFP composite coated cotton fabric was improved with increasing the high-content of graphene nanoplatelet. When 5 V was applied to 64 GR/cotton, its surface temperature has been indicated to be about 48 °C and it could be used at a low voltage (<10 V). Thus, a horseshoe-pattern type electrical heating textile that is coated by high content of graphene nanoplatelet/PVDF-HFP composite solution sewn with silver-coated conductive yarn is expected to be applied to glove, shoes, jacket, and so on to improve its wearability and applicability. Full article
(This article belongs to the Special Issue Innovative Functional Textiles)
Show Figures

Figure 1

Open AccessArticle
The Effect of Polydopamine on an Ag-Coated Polypropylene Nonwoven Fabric
Polymers 2019, 11(4), 627; https://doi.org/10.3390/polym11040627 - 04 Apr 2019
Cited by 3
Abstract
A practical method for preparing multifunctional polypropylene (PP) nonwoven fabrics with excellent stability and durability was explored. First, the PP nonwoven fabric was sputtered by a magnetron sputtering system to form an Ag film on the surface of the fabric. Subsequently, the coated [...] Read more.
A practical method for preparing multifunctional polypropylene (PP) nonwoven fabrics with excellent stability and durability was explored. First, the PP nonwoven fabric was sputtered by a magnetron sputtering system to form an Ag film on the surface of the fabric. Subsequently, the coated fabric was treated with dopamine. The fabrics were characterized by scanning electron microscopy (SEM), an energy dispersive spectrometer (EDS), electrical conductivity, electromagnetic interference shielding effectiveness (EMI SE), antibacterial activity, stability, and laundering durability. The results of the study revealed that the fabric was coated with Ag, and after the treatment with dopamine, the surfaces of Ag-coated fibers were coated with polydopamine (PDA). The fabrics still had a sheet resistance below ~15 Ω/sq and exhibited excellent EMI SE above ~25 dB, though few differences existed from the single Ag-coated sample. After the treatment with dopamine, the antibacterial activity of the fabric was enhanced. Meanwhile, the treated samples exhibited excellent resistance against sodium sulfide corrosion, which could enhance the stability of the Ag-coated fabric. Moreover, the laundering durability of the treated fabric was improved in the same process, whose lowest sheet resistance was ~18 Ω/sq and the EMI SE was ~8 dB more than single Ag-coated PP nonwoven fabrics. In conclusion, this method was considered to be effective in fabricating multifunctional, stable, and durable fabrics. Full article
(This article belongs to the Special Issue Innovative Functional Textiles)
Show Figures

Graphical abstract

Open AccessArticle
Optimized Dyeing Process for Enhancing the Functionalities of Spent Coffee Dyed Wool Fabrics Using a Facile Extraction Process
Polymers 2019, 11(4), 574; https://doi.org/10.3390/polym11040574 - 28 Mar 2019
Abstract
Spent coffee grounds are the byproduct of coffee brewing and are generally discarded as waste. However, spent coffee has high levels of organic compounds that have multiple biological effects, including antibacterial and antioxidant activities. In this light, spent coffee grounds were tested for [...] Read more.
Spent coffee grounds are the byproduct of coffee brewing and are generally discarded as waste. However, spent coffee has high levels of organic compounds that have multiple biological effects, including antibacterial and antioxidant activities. In this light, spent coffee grounds were tested for fabric dyeing to both functionalize as well as color the fabrics. The dyeing solution was prepared by extracting spent coffee grounds collected from a local coffee house by using a manual espresso machine. The spent coffee extract was applied to wool fabrics using a laboratory infrared dyeing machine. After the dyeing process was completed, the fabrics were mordanted with a tannic acid aqueous solution. To optimize the dyeing conditions, the times and temperatures during the process were varied, and the functionalities and other properties including color and strength of the wool fabrics dyed with the spent coffee extract were investigated. The wool fabrics dyed with the spent coffee extract were significantly colored, and the color withstands the effect of washing and light exposure. Moreover, the dyeing process with the spent coffee extract and the mordanting process with tannic acid gave the wool fabrics antibacterial and antioxidant properties. Full article
(This article belongs to the Special Issue Innovative Functional Textiles)
Show Figures

Graphical abstract

Open AccessArticle
Mechanism of Accelerant on Disperse Dyeing for PET Fiber in the Silicone Solvent Dyeing System
Polymers 2019, 11(3), 520; https://doi.org/10.3390/polym11030520 - 19 Mar 2019
Abstract
Disperse dyeing for polyethylene terephthalate (PET) fiber in different non-aqueous solvent dyeing systems have been extensively studied over the past decades. In the present work, disperse dyeing for PET was investigated in a silicone solvent dyeing system. The influence of accelerant on the [...] Read more.
Disperse dyeing for polyethylene terephthalate (PET) fiber in different non-aqueous solvent dyeing systems have been extensively studied over the past decades. In the present work, disperse dyeing for PET was investigated in a silicone solvent dyeing system. The influence of accelerant on the fiber swelling, uptake of dye, K/S value of dyed fiber, and dye solubility in the silicone solvent were systematically investigated. Compared with no accelerant, the final uptake of the disperse dye (C. I. Disperse Blue 367) could increase to 81% with 20% accelerant in the silicone solvent dyeing system, and the K/S value of dyed fiber was also higher (3.3 for no accelerant vs. 13.2 for accelerant). The influence of accelerant on the performance of disperse dyeing was also studied. Firstly, the solubility of the disperse dye in the silicone solvent can be decreased by the accelerant. Moreover, the solubility of the disperse dye is inversely proportional to the K/S value and the uptake of the dye. In addition, although the silicone solvent can diffuse to the inner fiber and has a partial swelling in the PET fiber, the swelling of PET can be improved by the accelerant. Furthermore, the swelling of fiber can reach equilibrium when the amount of accelerant was 15% (the weight of fiber). Therefore, this eco-friendly dyeing technology has considerable potential for application to a broad array of chemical fibers. Full article
(This article belongs to the Special Issue Innovative Functional Textiles)
Show Figures

Graphical abstract

Open AccessArticle
Diffusion Mechanism of Aqueous Solutions and Swelling of Cellulosic Fibers in Silicone Non-Aqueous Dyeing System
Polymers 2019, 11(3), 411; https://doi.org/10.3390/polym11030411 - 04 Mar 2019
Cited by 2
Abstract
The main goal of this article is to study the diffusion mechanism of aqueous solutions and the swelling of cellulosic fibers in the silicone non-aqueous dyeing system via fluorescent labeling. Due to non-polar media only adsorbing on the surface of fiber, cellulosic fiber [...] Read more.
The main goal of this article is to study the diffusion mechanism of aqueous solutions and the swelling of cellulosic fibers in the silicone non-aqueous dyeing system via fluorescent labeling. Due to non-polar media only adsorbing on the surface of fiber, cellulosic fiber could not swell as a result of the non-polar media. However, because water molecules can diffuse into the non-crystalline region of the fiber, cellulosic fiber could swell by water which was dispersed or emulsified in a non-aqueous dyeing system. To study the diffusion mechanism of an aqueous solution in the siloxane non-aqueous dyeing system, siloxane non-aqueous media was first diffused to the cellulosic fiber because of its lower surface tension. The resulting aqueous solution took more time to diffuse the surface of the cellulosic fiber, because water molecules must penetrate the siloxane non-aqueous media film. Compared with the fluorescent intensity of the fiber surface, the siloxane film could be re-transferred to the dye bath under the emulsification of the surfactant and the mechanical force. Therefore, a longer diffusion time of the aqueous solution ensured the dyeing feasibility for cellulosic fiber in the non-aqueous dyeing system. Full article
(This article belongs to the Special Issue Innovative Functional Textiles)
Show Figures

Graphical abstract

Open AccessArticle
Environmentally Friendly Flexible Strain Sensor from Waste Cotton Fabrics and Natural Rubber Latex
Polymers 2019, 11(3), 404; https://doi.org/10.3390/polym11030404 - 01 Mar 2019
Cited by 3
Abstract
A green approach was successfully developed to fabricate flexible sensors by utilizing carbonized waste cotton fabrics in combination with natural rubber latex. Waste cotton fabrics were firstly carbonized by heat treatment in the nitrogen atmosphere before they were combined with natural rubber latex [...] Read more.
A green approach was successfully developed to fabricate flexible sensors by utilizing carbonized waste cotton fabrics in combination with natural rubber latex. Waste cotton fabrics were firstly carbonized by heat treatment in the nitrogen atmosphere before they were combined with natural rubber latex using three methods, i.e., vacuum bagging, negative pressure adsorption and drop coating. After impregnation with natural rubber, the carbonized cotton maintained the fabric structure and showed good conductivity. More importantly, the electric resistance of the textile composites changed with the tensile strain. The cyclic stretching-releasing tests indicated that the prepared wearable flexible strain sensors were sensitive to strain and stable under cyclic loading. The flexible strain sensor also demonstrated the capability of monitoring human finger and arm motion. Full article
(This article belongs to the Special Issue Innovative Functional Textiles)
Show Figures

Graphical abstract

Open AccessArticle
Manufacture and Property of Warp-Knitted Fabrics with Polylactic Acid Multifilament
Polymers 2019, 11(1), 65; https://doi.org/10.3390/polym11010065 - 04 Jan 2019
Abstract
This study investigates the properties of polylactic acid (PLA) multifilament and its warp-knitted fabrics. Multifilament properties were tested and compared with PET multifilament with different diameters. The 83.3 dtex PLA multifilament was used to knit the fabric, and the fabric properties before and [...] Read more.
This study investigates the properties of polylactic acid (PLA) multifilament and its warp-knitted fabrics. Multifilament properties were tested and compared with PET multifilament with different diameters. The 83.3 dtex PLA multifilament was used to knit the fabric, and the fabric properties before and after dyeing were studied. Results showed that the mechanical properties of PLA multifilament were comparable to those of PET. However, PLA had a higher heat shrinkage rate. The dyed PLA warp-knitted fabric has excellent color fastness. Due to the influence of temperature and dye particles during the dyeing process, the breaking strength, air permeability and moisture permeability of the fabric were decreased. On the contrary, the elongation at break, abrasion resistance, anti-pilling properties, drape and crochet value of the fabric were increased. Full article
(This article belongs to the Special Issue Innovative Functional Textiles)
Show Figures

Figure 1

Back to TopTop