polymers-logo

Journal Browser

Journal Browser

Eco-Friendly Polymer-Based Materials: Design and Applications

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Circular and Green Sustainable Polymer Science".

Deadline for manuscript submissions: 20 June 2025 | Viewed by 5333

Special Issue Editor

College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, China
Interests: polymer chemistry; biomass; biomaterials; metal polyphenol materials; natural product chemistry; nanomedicine; environmental catalytic; adsorption and separation; energy storage; colloids and surface
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Eco-friendly polymer-based materials are sustainable substances that are derived from renewable resources and have minimal impact on the environment throughout their lifecycle. The aim of exploring polymer-based sustainable eco-friendly materials is rooted in the growing need for sustainable and eco-friendly materials in various industries. These materials are being increasingly used in various industries as a sustainable alternative to traditional materials. This Special Issue encompasses various aspects to contribute to sustainable material development, combining environmental considerations with the need for structural integrity, including material properties, biodegradation characteristics, life cycle analysis, and application feasibility, to provide a comprehensive understanding of the potential of these materials in structural contexts.

Polymers are an important class of materials that are providing unparalleled benefits in our daily lives. Over the past decade, there has been a rapid increase in demand for eco-friendly materials to counter various problems, such as environmental issues, biodegradability, sustainability, and biocompatibility. Thus, sustainable polymers derived from renewable resources are a fast-growing and evolving research field for energy and environmental applications. Sustainable polymers can be derived from natural sources or synthesized from renewable resources. Therefore, this Special Issue provides a discussion on the physical and chemical properties of sustainable polymers, which exhibit high performance for energy storage, environmental applications, biomedicine, etc.

Dr. Gao Xiao
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • polymer–matrix composites
  • biomass
  • adsorption and separation
  • green chemistry
  • biodegradability
  • nanocatalysis
  • value-added products
  • biomaterials
  • biomedical applications
  • energy storage
  • environmental applications
  • polymer hydrogel

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

22 pages, 5580 KiB  
Article
Improving Eco-Friendly Polymer Adhesive Joints: Innovative Toughening Strategies for Consistent Performance Under Various Loading Conditions
by Shahin Jalali, Ricardo J. C. Carbas, Eduardo A. S. Marques and Lucas F. M. da Silva
Polymers 2025, 17(5), 648; https://doi.org/10.3390/polym17050648 - 28 Feb 2025
Viewed by 570
Abstract
In modern engineering applications, the use of sustainable materials and eco-friendly methods has become increasingly important. Wood joints, especially those strengthened with bio-adhesive, have attracted considerable attention due to their inherent environmental benefits and desirable mechanical properties. Compared to traditional joining methods, adhesive [...] Read more.
In modern engineering applications, the use of sustainable materials and eco-friendly methods has become increasingly important. Wood joints, especially those strengthened with bio-adhesive, have attracted considerable attention due to their inherent environmental benefits and desirable mechanical properties. Compared to traditional joining methods, adhesive joints offer unique advantages such as improved load distribution, reduced stress concentration, and enhanced aesthetic appeal. This study aims to enhance delamination resistance in wooden adhesive joints using a novel method involving reinforced high-toughness resin on surfaces. Additionally, a hybrid substrate approach applies a tough layer to outer plies and a densified wood core with greater fiber direction strength. Normal, toughened, and hybrid single-lap joint specimens were analyzed through both experimental and numerical methods under various loading conditions, including quasi-static and intermediate rates. The proposed method involved bio-adhesive penetration into the wood substrate, forming a reinforced surface zone. The experimentally validated results show a significant improvement in joint strength, exhibiting an approximate 2.8-fold increase for the toughened joints compared to the reference joints under intermediate-rate conditions. Furthermore, the absorbed energy of the toughened joints increased by a substantial factor of up to 4.5 times under the same conditions. The fracture surfaces analysis revealed that the toughening method changed the failure mechanism of the joints from delamination to fiber breakage, indicating that the strength of the substrate was lower than that of the joint under impact conditions. The viscoelastic behavior of the bio-adhesive also influenced the response of the joints to the changing displacement rate. The toughening method enhanced the resilience and load-bearing capacity of the wood joints, making them more suitable for dynamic applications. Full article
(This article belongs to the Special Issue Eco-Friendly Polymer-Based Materials: Design and Applications)
Show Figures

Figure 1

19 pages, 7270 KiB  
Article
Dye Adsorbent from Natural Rubber Latex Foam: Efficiency and Post-Utilization
by Abdulhakim Masa, Nureeyah Jehsoh and Nabil Hayeemasae
Polymers 2025, 17(1), 106; https://doi.org/10.3390/polym17010106 - 2 Jan 2025
Viewed by 785
Abstract
This study examined the feasibility of using natural rubber (NR) latex foam as a dye adsorbent and antibacterial foam. The dyes used in this experiment were Methylene Blue (MB) and Alizarin Yellow (AY). Foams with that optimum density were further evaluated for adsorption [...] Read more.
This study examined the feasibility of using natural rubber (NR) latex foam as a dye adsorbent and antibacterial foam. The dyes used in this experiment were Methylene Blue (MB) and Alizarin Yellow (AY). Foams with that optimum density were further evaluated for adsorption isotherm, kinetics, and thermodynamic data. The dye adsorption occurred in two steps: the initial and the stabilized stages where an increase in dye concentrations boosted the adsorption capacity. Based on the prediction, the maximum adsorptions of MB and AY from the solution were 3.15 and 10.31 mg/g, respectively. The Langmuir isotherm fits better with the adsorption of MB while AY is better matched by the Freundlich isotherm. Moreover, the adsorption behavior fits well with the pseudo-second-order model. MB took much longer to reach the stabilized stage, especially at high dye concentrations. The thermodynamic study revealed that physical adsorption accounted for most of the adsorption. Later, the foam after use as an adsorbent was further utilized as an antibacterial foam. Based on the qualitative and quantitative aspects, the results indicate that the dye-carrying foam could inhibit the growth of both Gram-positive and Gram-negative bacteria. It can be concluded that NR latex foam can be applied as a dye adsorbent and further utilized as an antibacterial foam. Full article
(This article belongs to the Special Issue Eco-Friendly Polymer-Based Materials: Design and Applications)
Show Figures

Graphical abstract

13 pages, 2306 KiB  
Article
From Fossil to Bio-Based AESO–TiO2 Microcomposite for Engineering Applications
by Cristian-Dragos Varganici, Liliana Rosu, Dan Rosu and Mihai Asandulesa
Polymers 2024, 16(23), 3363; https://doi.org/10.3390/polym16233363 - 29 Nov 2024
Viewed by 649
Abstract
Environmental issues and the reduction of fossil fuel resources will lead to the partial or total substitution of petroleum-based materials with natural, raw, renewable ones. One expanding domain is the obtaining of engineering materials from vegetable oils for sustainable, eco-friendly polymers for different [...] Read more.
Environmental issues and the reduction of fossil fuel resources will lead to the partial or total substitution of petroleum-based materials with natural, raw, renewable ones. One expanding domain is the obtaining of engineering materials from vegetable oils for sustainable, eco-friendly polymers for different applications. Herein, the authors propose a simplified and green synthesis pathway for a thermally curable, acrylated and epoxidized soybean oil matrix formulation containing only epoxidized soybean oil, acrylic acid, a reactive diluent (5%) and just 0.15 mL of catalyst. The small amount of reactive diluent significantly reduced the initial system viscosity while eliminating the need for adding solvent, hardener, activator, etc. Both the thermally cured composite with a 2% TiO2 microparticle filler and its pristine matrix were comparably characterized in terms of structural, thermal, morphological, dielectric and wettability by Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetry, scanning electron microscopy, broadband dielectric spectrometry and contact angle measurements. The 2% filler in the composite generated superior thermal stability via lower mass loss (48.89% vs. 57.14%) and higher degradation temperatures (395 °C vs. 387 °C), increased the glass transition temperature from −20 °C to −10 °C, rendered the microcomposite hydrophobic by increasing the contact angle from 88° to 96° and enhanced dielectric properties compared to the pristine matrix. All investigations recommend the microcomposite for protective coatings, capacitors, sensors and electronic circuits. This study brings new contributions to green chemistry and sustainable materials. Full article
(This article belongs to the Special Issue Eco-Friendly Polymer-Based Materials: Design and Applications)
Show Figures

Graphical abstract

14 pages, 3735 KiB  
Article
A Sustainable and Eco-Friendly Membrane for PEM Fuel Cells Using Bacterial Cellulose
by Xiaozhen Yang, Lin Huang, Qiang Deng and Weifu Dong
Polymers 2024, 16(21), 3017; https://doi.org/10.3390/polym16213017 - 28 Oct 2024
Cited by 1 | Viewed by 1463
Abstract
Bacterial cellulose (BC) is an advantageous polymer due to its renewable nature, low cost, environmental compatibility, biocompatibility, biodegradability, chemical stability, and ease of modification. With these advantages, BC is an interesting candidate for the development of novel eco-friendly materials for proton-exchange membrane (PEM) [...] Read more.
Bacterial cellulose (BC) is an advantageous polymer due to its renewable nature, low cost, environmental compatibility, biocompatibility, biodegradability, chemical stability, and ease of modification. With these advantages, BC is an interesting candidate for the development of novel eco-friendly materials for proton-exchange membrane (PEM) applications. However, its practical applications have been limited by its relatively high dispersion in water, which usually occurs during the operation of proton-exchange membrane fuel cells (PEMFCs). In addition, the proton conductivity of bacterial cellulose is poor. In this study, functionalized BC modified with 3-aminopropyltriethoxysilane (APTES) was prepared using a solvent casting method to enhance its performance. The results showed that the water stability of the modified BC membrane was significantly improved, with the contact angle increasing from 54.9° to 103.3°. Furthermore, the optimum ratio of BC and APTES was used to prepare a proton-exchange membrane with a maximum proton conductivity of 62.2 mS/cm, which exhibited a power generation performance of 4.85 mW/cm2 in PEMFCs. It is worth mentioning that modified BC membranes obtained by combining an alkaline proton carrier (-NH2) with BC have rarely been reported. As fully bio-based conductive membranes for PEMFCs, they have the potential to be a low-cost, eco-friendly, and degradable alternative to expensive, ecologically problematic fluoric ionomers in short-term or disposable applications, such as biodegradable electronics and portable power supplies. Full article
(This article belongs to the Special Issue Eco-Friendly Polymer-Based Materials: Design and Applications)
Show Figures

Graphical abstract

19 pages, 4521 KiB  
Article
A Novel Composite Material UiO-66-Br@MBC for Mercury Removal from Flue Gas: Preparation and Mechanism
by Zhen Zhang, Zikuo Li, Youxiang Feng, Jingxiang Yu, Xikai Zhang, Jinchao Wen, Haotian Nie, Yue Yu and Li Jia
Polymers 2024, 16(17), 2508; https://doi.org/10.3390/polym16172508 - 3 Sep 2024
Cited by 2 | Viewed by 1334
Abstract
To reduce the mercury content in flue gas from coal-fired power plants and to obtain high-performance, low-cost mercury adsorbents, a novel composite material was prepared by structural design through the in situ growth method. Functionalization treatments such as the modification of functional groups [...] Read more.
To reduce the mercury content in flue gas from coal-fired power plants and to obtain high-performance, low-cost mercury adsorbents, a novel composite material was prepared by structural design through the in situ growth method. Functionalization treatments such as the modification of functional groups and multilayer loading of polymetallic were conducted. These materials include the MOF material UiO-66 and modified biochar doped with Fe/Ce polymetallic, both of which contain unsaturated metal centrals and oxygen-containing functional groups. On the basis of obtaining the effects of adsorption temperature and composite ratio on the Hg0 removal characteristics, coupling and synergistic mechanisms between the various types of active centers included were investigated by using a variety of characterization and analysis tools. The active adsorption sites and oxidation sites were identified during this process, and the constitutive relationship between the physicochemical properties and the performance of Hg0 removal was established. The temperature-programmed desorption technique, Grand Canonical Monte Carlo simulation, and adsorption kinetic model were employed to reveal the mechanism of Hg0 removal. The results showed that the UiO-66-Br@MBC composite adsorbent possessed an excellent Hg0 removal performance at adsorption temperatures ranging from 50 to 250 °C, and targeted construction of adsorption and oxidation sites while maintaining thermal stability. The Hg0 removal by the composites is the result of both adsorption and oxidation. The micropores and small pore mesopores in the samples provide physical adsorption sites. The modified biochar acts as a carrier to facilitate the full exposure of the central metal zirconium ions, the formation of more active sites, and the process of electron transfer. The doping modification of the Br element can enhance the overall redox ability of the sample, and the introduced Fe and Ce polymetallic ions can work in concert to promote the oxidation process of Hg0. The excellent regulation of the ratio between adsorption and oxidation sites on the surface of the composite material finally led to a significant boost in the samples’ capacity to remove Hg0. Full article
(This article belongs to the Special Issue Eco-Friendly Polymer-Based Materials: Design and Applications)
Show Figures

Figure 1

Back to TopTop