polymers-logo

Journal Browser

Journal Browser

Fiber-Reinforced Polymer Composites: Fabrication, Characterization and Application, 2nd Edition

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Composites and Nanocomposites".

Deadline for manuscript submissions: 30 June 2025 | Viewed by 1084

Special Issue Editor


E-Mail Website
Guest Editor
Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), Chudong-ro 92, Bondong-eup, Wanju-gun, Jeollabuk-do 55324, Korea
Interests: fracture and recovery of composite materials; core–shell nanofiber; carbon-fiber-reinforced polymer (CFRP)
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

In recent decades, research on polymer science and technology has successfully developed a variety of fiber-reinforced polymer composites focusing on current topics of interest. The performance of composite materials that can withstand extreme environments, such as space, the deep sea, and the polar regions beyond the laboratory, is dazzling. In particular, the discovery and application of composite materials that enable new growth engines such as e-mobility are highly practical and important. In this Special Issue, we discuss the state-of-the-art technologies and methods for these materials. We highlight new developments and applications in structural or functional materials and their composites. We welcome in-depth and comprehensive research into the physicochemical and mechanistic fundamentals relevant to this field.

Dr. Min Wook Lee
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • fiber-reinforced polymers
  • fiber composites
  • ceramic matrix composites
  • functional materials
  • micro/nano-fibers
  • matrix
  • filler
  • additive

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 3366 KiB  
Article
Improvement in the Damping Behavior of Hierarchical Carbon Fiber-Reinforced Plastic for Park Golf Club Faces
by Seoyeon Bae, Minhyeok Shin, Eunjung Kim, Sungbi Lee, Woong-Ryeol Yu, Cheol-Hee Ahn and Wonjin Na
Polymers 2025, 17(3), 264; https://doi.org/10.3390/polym17030264 - 21 Jan 2025
Viewed by 841
Abstract
Park golf, introduced to Korea in 2000, has become a popular leisure activity, especially among older people. However, sudden shock between the ball and carbon fiber-reinforced plastic (CFRP) face can increase the risk of injuries, highlighting the need for enhanced damping material. However, [...] Read more.
Park golf, introduced to Korea in 2000, has become a popular leisure activity, especially among older people. However, sudden shock between the ball and carbon fiber-reinforced plastic (CFRP) face can increase the risk of injuries, highlighting the need for enhanced damping material. However, restitution and damping are critical properties of golf clubs and often exhibit a conflicting relationship; thus, a method is needed to address this challenge. Therefore, this study aimed to develop a CFRP with an enhanced restitution and damping ratio by incorporating carbon nanotubes and graphene oxide nanofillers into the existing CFRP face material. A drop test apparatus was set up to measure the coefficient of restitution, and the damping properties were evaluated using a pencil lead-breaking test. CNTs exhibited high rebound properties due to their stiffness and hardness. In contrast, GO provided a modest increase in rebound while demonstrating a superior damping ratio, attributed to its layered structure and high internal friction. Based on these results, the optimal nanofiller content was determined as GO 0.025 wt%, showing a minor improvement in rebound performance, a 1033% improvement in vibration damping, and an 84% improvement in acoustic damping. Notably, this finding implies the importance of nanomaterial shape and its interaction with the composite matrix. A double-masked user test with a prototype confirmed enhanced comfort and reduced vibration feedback. The low-vibration components developed in this study are expected to be applicable in future research for controlling the damping ratio under impact or vibrations, such as UAM and helicopters. Full article
Show Figures

Figure 1

Back to TopTop