polymers-logo

Journal Browser

Journal Browser

Fiber-Reinforced Polymer Composites: Progress and Prospects

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Composites and Nanocomposites".

Deadline for manuscript submissions: 20 May 2025 | Viewed by 8244

Special Issue Editor


E-Mail Website
Guest Editor
School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
Interests: textile materials and textile processing; textile coloration and finishing; surface treatment of textile materials; textile product evaluation; textile testing instrumentation; safety and health management; environmental management
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Fiber-reinforced polymer composites (FRPs) are materials that consist of a polymer matrix reinforced with fibers. These composites offer a wide range of mechanical, thermal, and chemical properties, making them attractive for various applications across industries such as aerospace, automotive, construction, and sports equipment. Over the years, significant progress has been made in the development and implementation of FRPs, and they continue to hold promising prospects.

For this Special Issue, we invite academic researchers and industrial experts to submit their research findings covering different developments in FRPs. Topics in this Special Issue will include articles related to, but not limited to, the following: (i) manufacturing techniques; (ii) fiber development; (iii) matrix materials; (iv) tailored properties; (v) light-weight structures; (vii) corrosion resistance; (viii) design flexibility; and (ix) sustainability implications.

Prof. Dr. Chi-Wai Kan
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • fiber-reinforced polymer composites
  • manufacturing technique
  • fiber development
  • matrix materials
  • tailored properties
  • light-weight structure
  • design flexibility and sustainability

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

22 pages, 3405 KiB  
Article
Impact Value Improvement of Polycarbonate by Addition of Layered Carbon Fiber Reinforcement and Effect of Electron Beam Treatment
by Yoshitake Nishi, Naruya Tsuyuki, Michael C. Faudree, Helmut Takahiro Uchida, Kouhei Sagawa, Yoshihito Matsumura, Michelle Salvia and Hideki Kimura
Polymers 2025, 17(8), 1034; https://doi.org/10.3390/polym17081034 - 11 Apr 2025
Viewed by 529
Abstract
Polycarbonate (PC) is a highly recyclable thermoplastic with high impact strength that bodes well to re-melting extrusion and shredding for positive environmental impact. For the goal of improving impact strength further, layered carbon fiber (CF) reinforcement has been added between PC sheets by [...] Read more.
Polycarbonate (PC) is a highly recyclable thermoplastic with high impact strength that bodes well to re-melting extrusion and shredding for positive environmental impact. For the goal of improving impact strength further, layered carbon fiber (CF) reinforcement has been added between PC sheets by hot pressing at 6.0 MPa and 537 K for 8 min. An addition of cross-weave CF layer reinforcement to PC increased Charpy impact value, auc of the untreated [PC]4[CF]3 composite over that of untreated PC resin reported at all accumulative probabilities, Pf. At medial-Pf of 0.50, auc was increased 3.13 times (213%), while statistically lowest impact value as at Pf = 0 calculated by 3-parameter Weibull equation was boosted 2.64 times (164%). To optimize auc, effect of homogeneous electron beam irradiation (HLEBI) treatment of 43.2, 129, 216, 302, or 432 kGy at 170 kV acceleration voltage to the CF plies before assembly with PC then hot press was also investigated. The 216 kGy HLEBI dose appears to be optimum, raising as at Pf = 0 about 6.5% over that of untreated [PC]4[CF]3 and agrees with a previous study that showed 216 kGy to be optimum for static 3-point bending strength, when quality can be controlled. Electron spin resonance (ESR) data confirms 216 kGy HLEBI generates strong peaks in CF and PC indicating dangling bond (DB) generation. Bending strength increase was higher than that of impact due to lower test velocity and higher deformation area spreading along specimen length, allowing more DBs to take on the load. X-ray photoelectron spectroscopy (XPS) data of CF top ~10 nm surface layer in the sizing confirms C–O–H, C–H, and C–O peak height from 216 kGy exhibited little or no change compared with untreated. However, 432 kGy increased the peak heights indicating enhanced adhesion to PC. However, 432 kGy degraded as at Pf = 0 of the [PC]4[CF]3, and is reported to decrease impact strength of PC itself by excess dangling bond formation. Thus, the 432 kGy created increased PC/CF adhesion, but degraded the PC resin. Therefore, 216 kGy of 170 kV-HLEBI appeared to be a well-balanced condition between the PC-cohesive force and PC/CF interface adhesive force when fabricating [PC]4[CF]3. Full article
(This article belongs to the Special Issue Fiber-Reinforced Polymer Composites: Progress and Prospects)
Show Figures

Figure 1

21 pages, 6126 KiB  
Article
Influence of Lignin Type on the Properties of Hemp Fiber-Reinforced Polypropylene Composites
by Florin Ciolacu, Teodor Măluțan, Gabriela Lisa and Mariana Ichim
Polymers 2024, 16(23), 3442; https://doi.org/10.3390/polym16233442 - 8 Dec 2024
Viewed by 1356
Abstract
Increasing environmental awareness has boosted interest in sustainable alternatives for binding natural reinforcing fibers in composites. Utilizing lignin, a biorenewable polymer byproduct from several industries, as a component in polymer matrices can lead to the development of more eco-friendly and high-performance composite materials. [...] Read more.
Increasing environmental awareness has boosted interest in sustainable alternatives for binding natural reinforcing fibers in composites. Utilizing lignin, a biorenewable polymer byproduct from several industries, as a component in polymer matrices can lead to the development of more eco-friendly and high-performance composite materials. This research work aimed to investigate the effect of two types of lignin (lignosulfonate and soda lignin) on the properties of hemp fiber-reinforced polypropylene composites for furniture applications. The composites were produced by thermoforming six overlapping layers of nonwoven material. A 20% addition of soda lignin or lignosulfonate (relative to the nonwoven mass) was incorporated between the nonwoven layers made of 80% hemp and 20% polypropylene (PP). The addition of both types of lignin resulted in an increase in the tensile and bending strength of lignin-based composites, as well as a decrease in the absorbed water percentage. Compared to oriented strand board (OSB), lignin-based composites exhibited better properties. Regarding the two types of lignin used, the addition of lignosulfonate resulted in better composite properties than those containing soda lignin. Thermal analysis revealed that the thermal degradation of soda lignin begins long before the melting temperature of polypropylene. This early degradation explains the inferior properties of the composites containing soda lignin compared to those with lignosulfonate. Full article
(This article belongs to the Special Issue Fiber-Reinforced Polymer Composites: Progress and Prospects)
Show Figures

Figure 1

18 pages, 19223 KiB  
Article
Study on Frost Resistance of Recycled Rubber Straw Concrete Using Particle Swarm Optimization Enhanced Artificial Neural Networks
by Qijing Xia and Yongcheng Ji
Polymers 2024, 16(22), 3191; https://doi.org/10.3390/polym16223191 - 17 Nov 2024
Viewed by 867
Abstract
Rubber particles and straw powder were used to prepare recycled rubber straw concrete, and the freeze–thaw test was conducted on the recycled rubber straw concrete using the quick-freezing method. The frost resistance of the recycled rubber straw concrete was evaluated by determining the [...] Read more.
Rubber particles and straw powder were used to prepare recycled rubber straw concrete, and the freeze–thaw test was conducted on the recycled rubber straw concrete using the quick-freezing method. The frost resistance of the recycled rubber straw concrete was evaluated by determining the relative dynamic modulus of elasticity, the rate of mass loss, and the flexural strength of the recycled rubber straw concrete in the process of freezing and thawing. SEM was used to observe the microstructure of the recycled rubber straw concrete after the freezing and thawing process. SEM observed the microstructure of recycled rubber straw concrete after freezing and thawing. The effect and mechanism of rubber admixture and straw admixture on the frost resistance of concrete were investigated by microanalysis. Based on the experimental data, the particle swarm algorithm and genetic algorithm were used to optimize the BP neural network to establish the prediction model of recycled rubber straw powder, and the results show that the PSO-BP neural network prediction model established in this paper has good accuracy and stability. It has a good prediction effect on the flexural strength and the number of freeze–thaw cycles of recycled rubber straw concrete under different mixing ratios. Full article
(This article belongs to the Special Issue Fiber-Reinforced Polymer Composites: Progress and Prospects)
Show Figures

Figure 1

28 pages, 24398 KiB  
Article
Tribological Characteristics of Fibrous Polyphthalamide-Based Composites
by Yuanyi Shen, Dmitry G. Buslovich, Sergey V. Panin, Lyudmila A. Kornienko, Pavel V. Dobretsov and Yury M. Kolobov
Polymers 2024, 16(16), 2274; https://doi.org/10.3390/polym16162274 - 10 Aug 2024
Cited by 1 | Viewed by 1863
Abstract
The aim of this study was to investigate the tribological characteristics of commercially available high-strength polyphthalamide-based composites with great contents (30–50 wt.%) of both carbon and glass fibers in point and linear contacts against metal and ceramic counterfaces under dry friction and oil-lubricated [...] Read more.
The aim of this study was to investigate the tribological characteristics of commercially available high-strength polyphthalamide-based composites with great contents (30–50 wt.%) of both carbon and glass fibers in point and linear contacts against metal and ceramic counterfaces under dry friction and oil-lubricated conditions at various loads and sliding speeds. The lengths of both types of fibers were varied simultaneously with their contents while samples were fabricated from granules by injection molding. When loading PPA with 30 wt.% SCFs at an aspect ratio (AR) of 200, the ultimate tensile strength and the elastic modulus increased up to 142.7 ± 12.5 MPa and 12.9 ± 0.6 GPa, respectively. In the composites with the higher contents of reinforcing fibers PPA/40CCF and AR~1000, the ultimate tensile strength and the elastic modulus were 240 ± 3 MPa and 33.7 ± 1.9 GPa, respectively. Under the applied test conditions, a composite reinforced with 40 wt.% carbon fibers up to 100 μm long at an aspect ratio of ~1000 possessed the best both mechanical properties and tribological characteristics. One of the reasons that should be considered for improving the tribological characteristics of the composite is the fatigue wear mechanism, which is facilitated by the high filling degree, the strong interfacial adhesion, and the great aspect ratio for fibers. Under the oil-lubricated conditions, both friction coefficients and wear rates decreased, so such friction units could be implemented whenever possible. The reported data can be used as practical recommendations for applying fibrous polyphthalamide-based composites as friction unit components. Full article
(This article belongs to the Special Issue Fiber-Reinforced Polymer Composites: Progress and Prospects)
Show Figures

Graphical abstract

26 pages, 11470 KiB  
Article
The Role of Triboloading Conditions in Tribolayer Formation and Wear Resistance of PES-Based Composites Reinforced with Carbon Fibers
by Defang Tian, Changjun He, Dmitry G. Buslovich, Lyudmila A. Kornienko and Sergey V. Panin
Polymers 2024, 16(15), 2180; https://doi.org/10.3390/polym16152180 - 31 Jul 2024
Viewed by 1021
Abstract
In this paper, the tribological characteristics of polyethersulfone-based composites reinforced with short carbon fibers (SCFs) at aspect ratios of 14–250 and contents of 10–30 wt.% are reported for linear metal–polymer and ceramic–polymer tribological contacts. The results showed that the wear resistance could be [...] Read more.
In this paper, the tribological characteristics of polyethersulfone-based composites reinforced with short carbon fibers (SCFs) at aspect ratios of 14–250 and contents of 10–30 wt.% are reported for linear metal–polymer and ceramic–polymer tribological contacts. The results showed that the wear resistance could be greatly improved through tribological layer formation. Loading PES with 30 wt.% SCFs (2 mm) provided a minimum WR value of 0.77 × 10−6 mm3/N m. The tribological layer thicknesses were estimated to be equal to 2–7 µm. Several conditions were proposed, which contributed to the formation of a tribological layer from debris, including the three-stage pattern of the changing kinetics of the time dependence of the friction coefficient. The kinetics had to sharply increase up to ~0.4–0.5 in the first (running-in) stage and gradually decrease down to ~0.1–0.2 in the second stage. Then, if these levels did not change, it could be argued that any tribological layer had formed, become fixed and fulfilled its functional role. The PES-based composites loaded with SCFs 2 mm long were characterized by possessing the minimum CoF levels, for which their three-stage changing pattern corresponded to one of the conditions for tribological layer formation. This work provides valuable insight for studying the process parameters of tribological layer formation for SCF-reinforced thermoplastic PES composites and revealing their impact on tribological properties. Full article
(This article belongs to the Special Issue Fiber-Reinforced Polymer Composites: Progress and Prospects)
Show Figures

Graphical abstract

20 pages, 5120 KiB  
Article
Effects of Curing Defects in Adhesive Layers on Carbon Fiber–Quartz Fiber Bonded Joint Performance
by Xiaobo Yang, Miaomiao Zhang, Lihua Zhan, Bolin Ma, Xintong Wu, Cong Liu and He Xiang
Polymers 2024, 16(10), 1406; https://doi.org/10.3390/polym16101406 - 15 May 2024
Cited by 2 | Viewed by 1369
Abstract
Due to their mechanical load-bearing and functional wave transmission, adhesively bonded joints of carbon fiber–quartz fiber composites have been widely used in the new generation of stealth aviation equipment. However, the curing defects, caused by deviations between the process environment and the setting [...] Read more.
Due to their mechanical load-bearing and functional wave transmission, adhesively bonded joints of carbon fiber–quartz fiber composites have been widely used in the new generation of stealth aviation equipment. However, the curing defects, caused by deviations between the process environment and the setting parameters, directly affect the service performance of the joint during the curing cycle. Therefore, the thermophysical parameter evolution of adhesive films was analyzed via dynamic DSC (differential scanning calorimeter), isothermal DSC and TGA (thermal gravimetric analyzer) tests. The various prefabricating defects within the adhesive layer were used to systematically simulate the impacts of void defects on the tensile properties, and orthogonal tests were designed to clarify the effects of the curing process parameters on the joints’ bonding performance. The results demonstrate that the J-116 B adhesive film starts to cure at a temperature of 160 °C and gradually forms a three-dimensional mesh-bearing structure. Furthermore, a bonding interface between the J-116 B adhesive film and the components to be connected is generated. When the curing temperature exceeds 200 °C, both the adhesive film and the resin matrix thermally degrade the molecular structure. The adhesive strength weakens with an increasing defect area ratio and number, remaining more sensitive to triangle, edge and penetration defects. By affecting the molecular structure of the adhesive film, the curing temperature has a significant impact on the bonding properties; when the curing degree is ensured, the curing pressure directly impacts the adhesive’s performance by influencing the morphology, number and distribution of voids. Conversely, the heating rate and heat preservation time have minimal effects on the bonding performance. Full article
(This article belongs to the Special Issue Fiber-Reinforced Polymer Composites: Progress and Prospects)
Show Figures

Figure 1

Back to TopTop