Natural Polysaccharides: Structure and Function

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Biobased and Biodegradable Polymers".

Deadline for manuscript submissions: closed (25 March 2024) | Viewed by 2221

Special Issue Editors


E-Mail Website
Guest Editor
Collage of Life Science, China West Normal University, Nanchong, China
Interests: polysaccharide; structure identification; biological activity; anti-tumor activity; immune regulation; molecular mechanism

E-Mail Website
Guest Editor
Collage of Environmental Science and Engineering, China West Normal University, Nanchong, China
Interests: polysaccharide; structure identification; biological activity; anti-tumor activity; immune regulation; molecular mechanism

Special Issue Information

Dear Colleagues,

This Special Issue on Natural Polysaccharides: Structure and Function is devoted to the dissemination of high-quality original research articles or comprehensive reviews on cutting-edge developments in this interdisciplinary field. Polysaccharide is very common and widespread in nature. They play a vital role in many research fields: health, biomedicine, food, cosmetics, chemicals, bioplastics, biological packaging, biotechnology, architecture, fuel, etc. Structural identification of polysaccharides, biological activity and their molecular mechanism is a hot topic of rapid development.

This special issue is dedicated to the latest research on these topics, covering all aspects but are not limited to the polysaccharide structure identification, biological activity, molecular mechanism and application. Both original contributions and comprehensive reviews are welcome.

Prof. Dr. Yiling Hou
Prof. Dr. Xiang Ding
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • polysaccharide purification
  • structural characterization
  • biological activity
  • synthesis, physics, and analysis
  • polysaccharide-based materials
  • molecular mechanism

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 7467 KiB  
Article
Comparative Studies on the Structure and Biological Activities of Two New Polysaccharides from Tricholoma sinoportentosum (TS-P) and Termitomyces albuminosus (TA-P)
by Xi Chen, Tong Yang, Qinghua Huang, Biao Li, Xiang Ding and Yiling Hou
Polymers 2023, 15(9), 2227; https://doi.org/10.3390/polym15092227 - 8 May 2023
Cited by 6 | Viewed by 1471
Abstract
Polysaccharides are important active ingredients of living organisms. In this study, two new polysaccharides, Tricholoma sinoportentosum polysaccharide (TS-P) and Termitomyces albuminosus (TA-P), were extracted and purified using anion exchange column chromatography. The structure of each polysaccharide was identified by HPGPC, FT-IR, HPLC, GC-MS [...] Read more.
Polysaccharides are important active ingredients of living organisms. In this study, two new polysaccharides, Tricholoma sinoportentosum polysaccharide (TS-P) and Termitomyces albuminosus (TA-P), were extracted and purified using anion exchange column chromatography. The structure of each polysaccharide was identified by HPGPC, FT-IR, HPLC, GC-MS and NMR, and the biological activities were also investigated. The results of the structure identification showed that TS-P was composed of arabinose, mannose, glucose and galactose at a ratio of 1:1:3:2 and its main chain was composed of (1→4)-Arap residues, (1→4,6)-D-Manp residues and two (1→6)-Galp residues. The TA-P was composed of arabinose, glucose and galactose at a ratio of 2:4:8. Its main chain was composed of two (1→4)-β-L-Arap residues, one (1→4)-Glcp residues, three (1→2,6)-Galp residues and five (1→6)-Galp residues. The immunoassay showed that TS-P and TA-P could significantly promote the proliferation of T cells, B cells and RAW264.7 cells. The cell cycle results showed that for B cells and macrophages, TS-P and TA-P mainly affected the G0/G1 phases of the cell cycle; for T cells, TS-P affected G2/M phase, while TA-P mainly affected the G0/G1 phases. TS-P could significantly promote B cells to secrete IgA, IgG and IgD (p < 0.01), while TA-P could significantly promote the secretion of IgA and IgG (p < 0.01). The chemical structure and biological activity of TS-P and TA-P were first studied and compared to lay a theoretical foundation for the application of fungal polysaccharide. Full article
(This article belongs to the Special Issue Natural Polysaccharides: Structure and Function)
Show Figures

Figure 1

Back to TopTop