polymers-logo

Journal Browser

Journal Browser

Fiber Reinforced Polymeric Composites

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Composites and Nanocomposites".

Deadline for manuscript submissions: 31 October 2025 | Viewed by 276

Special Issue Editor


E-Mail Website
Guest Editor
Department of Mechanical Engineering, Gachon University, Seongnam 13120, Republic of Korea.
Interests: composite materials; polymers; nanomaterials; mechanical engineering; molecular simulations
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue delves into the cutting-edge advancements, innovative applications, and future prospects of fiber-reinforced polymeric composites (FRPCs). FRPCs are a class of materials that combine the high strength and stiffness of fibers with the versatility and durability of polymer matrices, resulting in lightweight, high-performance materials that are revolutionizing industries ranging from aerospace and automotives to construction and renewable energy.

The Special Issue brings together a collection of peer-reviewed research articles, reviews, and case studies that explore the latest developments in the design, fabrication, characterization, and application of FRPCs. Topics of interest include, but are not limited to, the following:

  • Characterization and experimental testing of FRPCs;
  • Manufacturing technology and applications of FRPCs;
  • Modification of interface, fibers, or matrix systems;
  • Modeling, simulation, and design of FRPCs;
  • Recycling and sustainability;
  • Smart and self-healing composites.

The Special Issue welcomes high-quality original research papers and review articles from contributors worldwide, focusing on advancements that will help fully exploit the potential of fiber-reinforced polymeric composites in various applications.

Prof. Dr. Hansang Kim
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • fiber-reinforced polymers
  • composite materials
  • advanced manufacturing
  • material characterization
  • hybrid composites
  • nano-composites
  • sustainability
  • structural applications
  • durability
  • computational modeling

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

26 pages, 8732 KiB  
Article
Impact of CuSn10 Powder on Mechanical Properties and Tribological Performance of Novel Basalt Fiber-Reinforced Hybrid Composites
by Corina Birleanu, Bere Paul, Razvan Udroiu, Mircea Cioaza and Marius Pustan
Polymers 2025, 17(9), 1161; https://doi.org/10.3390/polym17091161 - 24 Apr 2025
Viewed by 233
Abstract
Hybrid composite materials reinforced with both fibers and particulate fillers are increasingly used in engineering due to their favorable balance of mechanical strength, reduced weight, and enhanced tribological performance. This study investigated the effect of CuSn10 bronze powder additions (5%, 10%, and 15% [...] Read more.
Hybrid composite materials reinforced with both fibers and particulate fillers are increasingly used in engineering due to their favorable balance of mechanical strength, reduced weight, and enhanced tribological performance. This study investigated the effect of CuSn10 bronze powder additions (5%, 10%, and 15% by weight) on the mechanical and tribological properties of novel basalt fiber-reinforced polymer (BFRP) composites. The composites were fabricated via vacuum-assisted processing and tested under dry sliding conditions with varying loads (10, 20, and 30 N) and sliding speeds (0.1, 0.25, and 0.36 m/s). The results show that the optimal tensile strength (440.6 MPa) was achieved at 10 wt% CuSn10, while the best tribological performance was observed at 15 wt% CuSn10, under a 10 N load and 0.25 m/s sliding speed, where the coefficient of friction decreased by up to 38% and the specific wear rate was reduced by more than 50% compared to the unreinforced BFRP composite. These enhancements are attributed to the formation of a stable oxide-based tribolayer (CuO, SnO2) and improved load transfer at the fiber–matrix interface. Statistical analysis (GLM) confirmed that CuSn10 content had the most significant influence on tribological parameters. The findings provide valuable insight into the design of high-performance hybrid composites for structural and tribological applications. Full article
(This article belongs to the Special Issue Fiber Reinforced Polymeric Composites)
Show Figures

Figure 1

Back to TopTop