Seed Aging Mechanism

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Plant Physiology and Metabolism".

Deadline for manuscript submissions: closed (31 January 2024) | Viewed by 5904

Special Issue Editors


E-Mail Website
Guest Editor
National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Interests: physiology; biochemistry; conservation

E-Mail Website
Guest Editor
Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
Interests: proteomics; metabolites; transcriptome; molecular

Special Issue Information

Dear Colleagues,

Seed ageing is commonly described as the loss of seed quality or viability, which play extremely important roles in agricultural production and food security. Seed aging inevitably occurs, even when stored at low temperatures and low moisture. A series of studies have given us important insights into the regulatory mechanisms in seed production, storage, genetic conservation, habitat regeneration, and testing during seed ageing. This Special Issue of Plants will highlight the physiology, biochemistry, molecular biology and ecology involved in the improvement and technical control of seed ageing.

Dr. Guangkun Yin
Dr. Weiqing Wang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • seed ageing
  • characterization
  • genetic integrity
  • testing technique
  • antioxidant system
  • energy supply
  • metabolites
  • transcriptome
  • proteomics

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 4406 KiB  
Article
Aging-Induced Reduction in Safflower Seed Germination via Impaired Energy Metabolism and Genetic Integrity Is Partially Restored by Sucrose and DA-6 Treatment
by Tang Lv, Juan Li, Lanyu Zhou, Tao Zhou, Hugh W. Pritchard, Chaoxiang Ren, Jiang Chen, Jie Yan and Jin Pei
Plants 2024, 13(5), 659; https://doi.org/10.3390/plants13050659 - 27 Feb 2024
Viewed by 1200
Abstract
Seed storage underpins global agriculture and the seed trade and revealing the mechanisms of seed aging is essential for enhancing seed longevity management. Safflower is a multipurpose oil crop, rich in unsaturated fatty acids that are at high risk of peroxidation as a [...] Read more.
Seed storage underpins global agriculture and the seed trade and revealing the mechanisms of seed aging is essential for enhancing seed longevity management. Safflower is a multipurpose oil crop, rich in unsaturated fatty acids that are at high risk of peroxidation as a contributory factor to seed aging. However, the molecular mechanisms responsible for safflower seed viability loss are not yet elucidated. We used controlled deterioration (CDT) conditions of 60% relative humidity and 50 °C to reduce germination in freshly harvested safflower seeds and analyzed aged seeds using biochemical and molecular techniques. While seed malondialdehyde (MDA) and fatty acid content increased significantly during CDT, catalase activity and soluble sugar content decreased. KEGG analysis of gene function and qPCR validation indicated that aging severely impaired several key functional and biosynthetic pathways including glycolysis, fatty acid metabolism, antioxidant activity, and DNA replication and repair. Furthermore, exogenous sucrose and diethyl aminoethyl hexanoate (DA-6) treatment partially promoted germination in aged seeds, further demonstrating the vital role of impaired sugar and fatty acid metabolism during the aging and recovery processes. We concluded that energy metabolism and genetic integrity are impaired during aging, which contributes to the loss of seed vigor. Such energy metabolic pathways as glycolysis, fatty acid degradation, and the tricarboxylic acid cycle (TCA) are impaired, especially fatty acids produced by the hydrolysis of triacylglycerols during aging, as they are not efficiently converted to sucrose via the glyoxylate cycle to provide energy supply for safflower seed germination and seedling growth. At the same time, the reduced capacity for nucleotide synthesis capacity and the deterioration of DNA repair ability further aggravate the damage to DNA, reducing seed vitality. Full article
(This article belongs to the Special Issue Seed Aging Mechanism)
Show Figures

Figure 1

14 pages, 2742 KiB  
Article
Analysis and Identification of Genes Associated with the Desiccation Sensitivity of Panax notoginseng Seeds
by Yanan Wang, Weiqing Wang, Xiulian Chi, Meng Cheng, Tielin Wang, Xiaori Zhan, Yunjun Bai, Chenjia Shen and Xiaolin Li
Plants 2023, 12(22), 3881; https://doi.org/10.3390/plants12223881 - 17 Nov 2023
Viewed by 931
Abstract
Panax notoginseng (Burk.) F. H. Chen, a species of the genus Panax, radix has been traditionally used to deal with various hematological diseases and cardiovascular diseases since ancient times in East Asia. P. notoginseng produces recalcitrant seeds which are sensitive to desiccation and [...] Read more.
Panax notoginseng (Burk.) F. H. Chen, a species of the genus Panax, radix has been traditionally used to deal with various hematological diseases and cardiovascular diseases since ancient times in East Asia. P. notoginseng produces recalcitrant seeds which are sensitive to desiccation and difficult to store for a long time. However, few data are available on the mechanism of the desiccation sensitivity of P. notoginseng seeds. To gain a comprehensive perspective of the genes associated with desiccation sensitivity, cDNA libraries from seeds under control and desiccation processes were prepared independently for Illumina sequencing. The data generated a total of 70,189,896 reads that were integrated and assembled into 55,097 unigenes with a mean length of 783 bp. In total, 12,025 differentially expressed genes (DEGs) were identified during the desiccation process. Among these DEGs, a number of central metabolism, hormonal network-, fatty acid-, and ascorbate-glutathione-related genes were included. Our data provide a comprehensive resource for identifying the genes associated with the desiccation sensitivity of P. notoginseng seeds. Full article
(This article belongs to the Special Issue Seed Aging Mechanism)
Show Figures

Figure 1

12 pages, 2025 KiB  
Article
Effects of OsAOX1a Deficiency on Mitochondrial Metabolism at Critical Node of Seed Viability in Rice
by Jing Ji, Shuangshuang Lin, Xia Xin, Yang Li, Juanjuan He, Xinyue Xu, Yunxia Zhao, Gefei Su, Xinxiong Lu and Guangkun Yin
Plants 2023, 12(12), 2284; https://doi.org/10.3390/plants12122284 - 12 Jun 2023
Cited by 1 | Viewed by 1153
Abstract
Mitochondrial alternative oxidase 1a (AOX1a) plays an extremely important role in the critical node of seed viability during storage. However, the regulatory mechanism is still poorly understood. The aim of this study was to identify the regulatory mechanisms by comparing OsAOX1a-RNAi and [...] Read more.
Mitochondrial alternative oxidase 1a (AOX1a) plays an extremely important role in the critical node of seed viability during storage. However, the regulatory mechanism is still poorly understood. The aim of this study was to identify the regulatory mechanisms by comparing OsAOX1a-RNAi and wild-type (WT) rice seed during artificial aging treatment. Weight gain and time for the seed germination percentage decreased to 50% (P50) in OsAOX1a-RNAi rice seed, indicating possible impairment in seed development and storability. Compared to WT seeds at 100%, 90%, 80%, and 70% germination, the NADH- and succinate-dependent O2 consumption, the activity of mitochondrial malate dehydrogenase, and ATP contents all decreased in the OsAOX1a-RNAi seeds, indicating that mitochondrial status in the OsAOX1a-RNAi seeds after imbibition was weaker than in the WT seeds. In addition, the reduction in the abundance of Complex I subunits showed that the capacity of the mitochondrial electron transfer chain was significantly inhibited in the OsAOX1a-RNAi seeds at the critical node of seed viability. The results indicate that ATP production was impaired in the OsAOX1a-RNAi seeds during aging. Therefore, we conclude that mitochondrial metabolism and alternative pathways were severely inhibited in the OsAOX1a-RNAi seeds at critical node of viability, which could accelerate the collapse of seed viability. The precise regulatory mechanism of the alternative pathway at the critical node of viability needs to be further analyzed. This finding might provide the basis for developing monitoring and warning indicators when seed viability declines to the critical node during storage. Full article
(This article belongs to the Special Issue Seed Aging Mechanism)
Show Figures

Figure 1

19 pages, 4907 KiB  
Article
Integrated Analysis of miRNAome and Transcriptome Identify Regulators of Elm Seed Aging
by Tiantian Ye, Xu Huang, Tianxiao Ma, Ying Li, Xiaofeng Wang, Hai Lu and Hua Xue
Plants 2023, 12(8), 1719; https://doi.org/10.3390/plants12081719 - 20 Apr 2023
Cited by 3 | Viewed by 1717
Abstract
After maturity, seed vigor irreversibly decreases. Understanding the underlying mechanism is important to germplasm preservation. MicroRNAs (miRNAs) play vital regulatory roles in plants. However, little is known about how miRNAs regulate seed aging. Here, elm (Ulmus pumila L.) seeds of three aging [...] Read more.
After maturity, seed vigor irreversibly decreases. Understanding the underlying mechanism is important to germplasm preservation. MicroRNAs (miRNAs) play vital regulatory roles in plants. However, little is known about how miRNAs regulate seed aging. Here, elm (Ulmus pumila L.) seeds of three aging stages were subjected to a multi-omics analysis including transcriptome, small RNAome and degradome, to find regulators of seed aging. In the small RNAome, 119 miRNAs were identified, including 111 conservative miRNAs and eight novel miRNAs specific to elm seeds, named upu-miRn1-8. A total of 4900 differentially expressed genes, 22 differentially expressed miRNAs, and 528 miRNA-target pairs were identified during seed ageing. The target genes were mainly involved in the processing of proteins in the endoplasmic reticulum, metabolism, plant hormone signal transduction, and spliceosome. The expression of several DEGs and miRNAs were verified by qRT-PCR. The degradome data showed the exact degradation sites of upu-miR399a on ABCG25, and upu-miR414a on GIF1, etc. The dual-luciferase assay verified the negative regulation of upu-miR399a on ABCG25 and upu-miR414a on GIF1 in tobacco leaves. This study outlined the regulation network of mRNA, miRNA and miRNA-target genes during seed aging, which is helpful in integrating the regulation mechanisms of seed vigor at the transcriptional and post-transcriptional levels. Full article
(This article belongs to the Special Issue Seed Aging Mechanism)
Show Figures

Figure 1

Back to TopTop