Management of Soil Fertility and Plant Nutrition for Improved Crop Production

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Crop Physiology and Crop Production".

Deadline for manuscript submissions: 1 May 2026 | Viewed by 480

Special Issue Editors


E-Mail
Guest Editor
Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas/Scientific Observing and Experiment Station of Arable Land Conservation and Agriculture Environment (Heilongjiang), Ministry of Agriculture and Rural Areas, Heilongjiang Academy of Black Soil Conservation and Utilization, Heilongjiang Academy of Agricultural Sciences (HAAS), Harbin 150086, China
Interests: soil fertility; plant nutrition; long-term experimental monitoring

E-Mail
Guest Editor
Engineering Laboratory for Green Fertilizers, Chinese Academy of Sciences (CAS), Institute of Applied Ecology, CAS, Shenyang 110016, China
Interests: plant nutrition; fertilization; new fertilizer types

E-Mail
Guest Editor
Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs/State Key Laboratory of Efficient Utilization of Arid and Semi-ARID Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
Interests: soil fertilization; fertility evolution; soil improvement

Special Issue Information

Dear Colleagues,

Soil fertility are foundational in ensuring food production and achieving sustainability in agriculture. This Special Issue of Plants aims to explore techniques for optimizing soil fertility and plant nutrition management in farmland, with a focus on cutting-edge research on soil fertility changes, crop nutrient utilization, and green agricultural production to improve soil fertility and ensure food production. By addressing key challenges such as soil degradation, nutrient imbalance, and climate change, this issue aims to provide actionable insights for researchers, practitioners, and policy-makers dedicated to advancing agricultural ecosystems.

Prof. Dr. Xingzhu Ma
Prof. Dr. Lili Zhang
Prof. Nan Sun
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • green and efficient agricultural production technology
  • soil amendments and organic matter management
  • precision agriculture promoting nutritional optimization
  • changes in soil fertility and biological activity in farmland
  • sustainable crop rotation management

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 1278 KiB  
Article
High Ratio of Manure Substitution Enhanced Soil Organic Carbon Storage via Increasing Particulate Organic Carbon and Nutrient Availability
by Xiaoyu Hao, Xingzhu Ma, Lei Sun, Shuangquan Liu, Jinghong Ji, Baoku Zhou, Yue Zhao, Yu Zheng, Enjun Kuang, Yitian Liu and Shicheng Zhao
Plants 2025, 14(13), 2045; https://doi.org/10.3390/plants14132045 - 3 Jul 2025
Viewed by 13
Abstract
Replacing partial chemical fertilizers with organic fertilizer can increase organic carbon input, change soil nutrient stoichiometry and microbial metabolism, and then affect soil organic carbon (SOC) storage. A 6-year field experiment was used to explore the mechanism of SOC storage under different ratios [...] Read more.
Replacing partial chemical fertilizers with organic fertilizer can increase organic carbon input, change soil nutrient stoichiometry and microbial metabolism, and then affect soil organic carbon (SOC) storage. A 6-year field experiment was used to explore the mechanism of SOC storage under different ratios of manure substitution in northeast China, with treatments including chemical fertilizer application alone (nitrogen, phosphorus, and potassium, NPK) and replacing 1/4 (1/4M), 2/4 (2/4M), 3/4 (3/4M), and 4/4 (4/4M) of chemical fertilizer N with manure N. Soil nutrients, enzymatic activity, and SOC fractions were analyzed to evaluate the effect of different manure substitution ratios on SOC storage. A high ratio of manure substitution (>1/4) significantly increased soil total N, total P, total K, and available nutrients (NO3-N, available P, and available K), and the 4/4M greatly decreased the C/N ratio compared to the NPK. Manure incorporation increased microbial biomass carbon (MBC) by 18.3–53.0%. Treatments with 50%, 75%, and 100% manure substitution (2/4M, 3/4M, and 4/4M) enhanced bacterial necromass carbon (BNC), fungal necromass carbon (FNC), and total microbial necromass carbon (MNC) by 31.9–63.5%, 25.5–107.1%, and 27.4–94.2%, respectively, compared to the NPK treatment. Notably, the increase in FNC was greater than that of BNC as the manure substitution ratio increased. The increasing manure substitution significantly enhanced particulate organic C (POC) and total SOC but did not affect mineral-associated organic C (MAOC). High soil N and P supplies decreased leucine aminopeptidases (LAPs) and alkaline phosphatase activities but increased the activity ratio of β-glucosidase (BG)/(N-acetyl-glucosaminidase (NAG) + LAP). Treatments with 25% manure substitution (1/4M) maintained maize and soybean yield, but with increasing manure rate, the maize yield decreased gradually. Overall, the high ratio of manure substitution enhanced SOC storage via increasing POC and MNC, and decreasing the decomposition potential of manure C and soil C resulting from low N- and P-requiring enzyme activities under high nutrient supplies. This study provides empirical evidence that the rational substitution of chemical fertilizers with manure is an effective measure to improve the availability of nutrients, and its effect on increasing crop yields still needs to be continuously observed, which is still a beneficial choice for enhancing black soil fertility. Full article
Show Figures

Graphical abstract

19 pages, 2402 KiB  
Article
Straw and Green Manure Return Can Improve Soil Fertility and Rice Yield in Long-Term Cultivation Paddy Fields with High Initial Organic Matter Content
by Hailin Zhang, Long Chen, Yongsheng Wang, Mengyi Xu, Weiwen Qiu, Wei Liu, Tingyu Wang, Shenglong Li, Yuanhang Fei, Muxing Liu, Hanjiang Nie, Qi Li, Xin Ni and Jun Yi
Plants 2025, 14(13), 1967; https://doi.org/10.3390/plants14131967 - 27 Jun 2025
Viewed by 237
Abstract
Returning straw and green manure to the field is a vital agronomic practice for improving crop yields and ensuring food security. However, the existing research primarily focuses on drylands and low-fertility paddy fields. A systematic discussion of the yield-increasing mechanisms and soil response [...] Read more.
Returning straw and green manure to the field is a vital agronomic practice for improving crop yields and ensuring food security. However, the existing research primarily focuses on drylands and low-fertility paddy fields. A systematic discussion of the yield-increasing mechanisms and soil response patterns of medium- and long-term organic fertilization in subtropical, high-organic-matter paddy fields is lacking. This study conducted a six-year field experiment (2019–2024) in a typical high-fertility rice production area, where the initial organic matter content of the 0–20 cm topsoil layer was 44.56 g kg−1. Four treatments were established: PK (no nitrogen, only phosphorus and potassium fertilizer), NPK (conventional nitrogen, phosphorus, and potassium fertilizer), NPKM (NPK + full-amount winter milk vetch return), and NPKS (NPK + full-amount rice straw return). We collected 0–20 cm topsoil samples during key rice growth stages to monitor the dynamic changes in nitrate and ammonium nitrogen. The rice SPAD, LAI, plant height, and tiller number were also measured during the growth period. After the six-year rice harvest, we determined the properties of the topsoil, including its organic matter, pH, total nitrogen, phosphorus, potassium, available phosphorus and potassium, and alkali hydrolyzable nitrogen. The results showed that, compared to NPK, the organic matter content of the topsoil (0–20 cm) increased by 6.36% and 5.16% (annual average increase of 1.06% and 0.86%, lower than in low-fertility areas) in the NPKS and NPKM treatments, respectively; the total nitrogen, phosphorus, and potassium content increased by 16.59%, 8.81%, and 10.37% (NPKS) and 6.70%, 5.12%, and 11.62% (NPKM), respectively; the available phosphorus content increased by 21.87% and 8.42%, respectively; the available potassium content increased by 47.38% and 11.56%, respectively; and the alkali hydrolyzable nitrogen content increased by 3.24% and 2.34%, respectively. However, the pH decreased by 0.07 in the NPKS treatment while it increased by 0.17 in the NPKM treatment, respectively, compared to the PK treatment. NPKS and NPKM improved key rice growth indicators such as the SPAD, LAI, plant height, and tillering. In particular, the tillering of the NPKS treatment showed a sustained advantage at maturity, increasing by up to 13.64% compared to NPK, which also led to an increase in the effective panicle number. Compared to NPK, NPKS and NPKM increased the average yield by 9.52% and 8.83% over the six years, respectively, with NPKM having the highest yield in the first three years (2019–2021) and NPKS having the highest yield from the fourth year (2022–2024) onwards. These results confirm that inputting organic materials such as straw and green manure can improve soil fertility and rice productivity, even in rice systems with high organic matter levels. Future research should prioritize the long-term monitoring of carbon and nitrogen cycle dynamics and greenhouse gas emissions to comprehensively assess these practices’ sustainability. Full article
Show Figures

Figure 1

Back to TopTop