Photonic Integrated Circuits, Sensors, and Instrumentation

A special issue of Photonics (ISSN 2304-6732).

Deadline for manuscript submissions: closed (1 October 2024) | Viewed by 1813

Special Issue Editor


E-Mail Website
Guest Editor
International Frequency Sensor Association (IFSA), 08860 Castelldefels, Spain
Interests: smart sensors; optical sensors; frequency measurements
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue on Photonic Integrated Circuits, Sensors, and Instrumentation contains the extended papers from the 7th International Conference on Optics, Photonics and Lasers (OPAL’ 2024), 15–17 May 2024, Palma de Mallorca (Balearic Islands), Spain (https://opal-conference.com/). The event is organized by IFSA, a professional nonprofit association serving academia and industry since 1999.

The topics of interest include:

  • photonic sensors;
  • photodetectors;
  • photonic integrated circuits (pics);
  • photonic integration and packaging;
  • photonic crystals;
  • silicon photonics;
  • biophotonics;
  • microwave photonics;
  • quantum photonics;
  • terahertz photonics;
  • photonic instrumentation engineering;
  • applications of photonic technologies.

Dr. Sergey Y. Yurish
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Photonics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • photonics
  • photonic sensors
  • photonic integrated circuits (PICs)
  • biophotonics
  • silicon photonics
  • photonic crystals
  • photonic instrumentation

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 3704 KiB  
Article
Spectrum Allocation Using Integer Linear Programming and Kerr Optical Frequency Combs
by Sergio Muñoz-Tapasco, Andrés F. Calvo-Salcedo and Jose A. Jaramillo-Villegas
Photonics 2024, 11(12), 1114; https://doi.org/10.3390/photonics11121114 - 25 Nov 2024
Viewed by 402
Abstract
The rapid increase in Internet usage has led to a growing demand for bandwidth. Optical microring resonators (MRRs) are emerging as a promising solution to meet this need. MRRs generate optical frequency combs (OFCs) that provide multiple wavelengths with high phase coherence, enabling [...] Read more.
The rapid increase in Internet usage has led to a growing demand for bandwidth. Optical microring resonators (MRRs) are emerging as a promising solution to meet this need. MRRs generate optical frequency combs (OFCs) that provide multiple wavelengths with high phase coherence, enabling communication via wavelength division multiplexing (WDM). Spectrum allocation methods, such as the Routing, Modulation Level, and Spectrum Assignment (RMLSA) approach, play a crucial role in executing this strategy efficiently. While current algorithms have improved allocation efficiency, further development is necessary to optimize network performance. This paper presents an integer linear programming (ILP)-based method for network resource allocation, aiming to maximize the number request and the bandwidth assigned to each. The proposed approach offers a flexible cost function that prioritizes system constraints such as transmission distance and bandwidth requirements, resulting in significant improvements to the bandwidth blocking rate (BBR). By integrating multilevel modulation and using wavelengths generated by MRRs, this method efficiently handles up to 1075 requests, achieving a BBR of zero. This dynamic and adaptable allocation strategy ensures optimal resource utilization, enhancing overall network performance. Full article
(This article belongs to the Special Issue Photonic Integrated Circuits, Sensors, and Instrumentation)
Show Figures

Figure 1

7 pages, 1423 KiB  
Communication
Reverse-Engineered Exact Control of Population Transfer in Lossy Nonlinear Three-State Systems
by Artur Ishkhanyan
Photonics 2024, 11(11), 1007; https://doi.org/10.3390/photonics11111007 - 25 Oct 2024
Viewed by 869
Abstract
We introduce a reverse-engineered scheme for achieving the precise control of population transfer in nonlinear quantum systems characterized by a 1:2 resonance. This scheme involves the use of two resonant laser pulses that transition from initial and final states to an intermediate level [...] Read more.
We introduce a reverse-engineered scheme for achieving the precise control of population transfer in nonlinear quantum systems characterized by a 1:2 resonance. This scheme involves the use of two resonant laser pulses that transition from initial and final states to an intermediate level exhibiting irreversible losses. In comparison to alternative techniques, our approach offers computational efficiency advantages. Notably, the analytically defined form of the pump pulse enables tailored control strategies, enhancing robustness against decoherence and imperfections. This flexibility extends to choosing dump pulses and designing time evolution scenarios. These features open doors for practical implementation and scalability in quantum technologies, with potential applications in quantum information processing, quantum computing, and quantum communication. Full article
(This article belongs to the Special Issue Photonic Integrated Circuits, Sensors, and Instrumentation)
Show Figures

Figure 1

Back to TopTop