Optical Signal Processing for Advanced Communication Systems

A special issue of Photonics (ISSN 2304-6732). This special issue belongs to the section "Optical Communication and Network".

Deadline for manuscript submissions: 31 October 2025 | Viewed by 261

Special Issue Editor


E-Mail Website
Guest Editor
Electronic Information, Northwestern Polytechnical University, Xi'an 710072, China
Interests: microwave photonic radar and communication system; microwave photonic signal generation and processing; radio over fiber; optical fiber communications; integrated sensing and communication

Special Issue Information

Dear Colleagues,

With the increasing communication demand in the military and civilian fields, the diversification of communication scenarios makes the frequency band and bandwidth continuously expanded. The signal processing technology based on photonics has become an important enabling technology for expanding communication capacity and improving communication quality by virtue of its advantages of large bandwidth, multi-frequency band, low loss and anti-electromagnetic interference. To further boost the impact of this exciting and rapidly evolving field, this special issue aims to bring together contributions from leading experts in the field to provide effective solutions for signal optical processing in future advanced communication systems. The topics of this special issue include but are not limited to the following:

  • Radio over fiber
  • Microwave photonic wideband signal generation and reception
  • Optical fiber communications
  • Microwave photonic communication sensing integrated signal processing
  • Direction modulation signal generation

Dr. Weile Zhai
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Photonics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • optical fiber
  • microwave photonics
  • communication system
  • integrated sensing and communication
  • secure communication

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

32 pages, 2964 KiB  
Article
Enhancement of Optical Wireless Discrete Multitone Channel Capacity Based on Li-Fi Using Sparse Coded Mask Modeling
by Yong-Yuk Won, Heetae Han, Dongmin Choi and Sang Min Yoon
Photonics 2025, 12(4), 395; https://doi.org/10.3390/photonics12040395 - 18 Apr 2025
Viewed by 119
Abstract
A sparse coded mask modeling technique is proposed to increase the transmission capacity of an optical wireless link based on Li-Fi. The learning model for the discrete multitone (DMT) signal waveform is implemented using the proposed technique, which is designed based on a [...] Read more.
A sparse coded mask modeling technique is proposed to increase the transmission capacity of an optical wireless link based on Li-Fi. The learning model for the discrete multitone (DMT) signal waveform is implemented using the proposed technique, which is designed based on a masked auto-encoder. The entire length of the DMT signal waveform, encoded using quadrature phase shift keying (QPSK) or 16-quadrature amplitude modulation (16-QAM) symbols, is divided into equal intervals to generate DMT patches, which are subsequently compressed based on the specified masking ratio. After 1-m optical wireless transmission, the DMT signal waveform is reconstructed from the received DMT patch through a decoding process and then QPSK or 16-QAM symbols are recovered. Using the proposed technique, we demonstrate that we can increase the transmission capacity by up to 1.85 times for a 10 MHz physical bandwidth. Additionally, we verify that the proposed technique is feasible in Li-Fi networks with illumination environments above 240 lux. Full article
(This article belongs to the Special Issue Optical Signal Processing for Advanced Communication Systems)
Show Figures

Figure 1

Review

Jump to: Research

14 pages, 2088 KiB  
Review
Optical Link Design for Quantum Key Distribution-Integrated Optical Access Networks
by Sunghyun Bae and Seok-Tae Koh
Photonics 2025, 12(5), 418; https://doi.org/10.3390/photonics12050418 - 27 Apr 2025
Viewed by 157
Abstract
To achieve commercial scalability, fiber-based quantum key distribution (QKD) systems must be integrated into existing optical communication infrastructures, rather than deployed exclusively on dedicated dark fibers. Integrating QKD into optical access networks (OANs) would be particularly advantageous, as these networks provide direct connectivity [...] Read more.
To achieve commercial scalability, fiber-based quantum key distribution (QKD) systems must be integrated into existing optical communication infrastructures, rather than deployed exclusively on dedicated dark fibers. Integrating QKD into optical access networks (OANs) would be particularly advantageous, as these networks provide direct connectivity to end users for whom security is critical. Such integration can address the inherent security vulnerabilities in current OANs, which are primarily based on time-division multiplexing passive optical networks (TDM-PONs). However, integrating QKD into PONs poses significant challenges due to Raman noise and other detrimental effects induced by PON signals, which intensify as the launched power of PONs increases to support higher transmission speeds. In this study, we review recent advancements in both QKD and access network technologies, evaluate the technical feasibility of QKD-OAN integration, and propose cost-effective strategies to facilitate the widespread deployment of QKD in future access networks. Full article
(This article belongs to the Special Issue Optical Signal Processing for Advanced Communication Systems)
Show Figures

Figure 1

Back to TopTop