Topical Collection "New Frontiers in Tick Research"

A topical collection in Pathogens (ISSN 2076-0817). This collection belongs to the section "Ticks".

Editors

Dr. Alejandro Cabezas-Cruz
E-Mail Website
Guest Editor
UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, 94700 Maisons-Alfort, France
Interests: Tick-host-pathogen interactions; Emerging tick-borne pathogens; Anaplasma; Ehrlichia; Epidemiology; Tick microbiome; α-Gal
Special Issues and Collections in MDPI journals
Dr. Ladislav Šimo
E-Mail Website
Guest Editor
UMR BIPAR, INRA, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, 94700 Maisons-Alfort, France
Interests: Tick neuro-physiology; Signal transductions; Neuropeptides; Neurotransmitters; GPCRs
Special Issues and Collections in MDPI journals
Dr. James J. Valdés
E-Mail Website
Guest Editor
Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovska 1160/31, CZ-37005, České Budějovice, Czech Republic
Veterinary Research Institute, Hudcova 70, CZ-62100, Brno, Czech Republic
Interests: Thermodynamics of drug therapy against vector-based diseases
Dr. Dasiel Obregón
E-Mail Website
Guest Editor
School of Environmental Sciences, University of Guelph, N1G 2W1, ON, Canada
Interests: Preventive veterinary medicine; microbial ecology; vector-borne pathogens; host-pathogen interaction; functional metagenomics
Special Issues and Collections in MDPI journals

Topical Collection Information

Dear Colleagues,

Ticks, along with mites, are arachnids that constitute the subclass Acari. Molecular clock estimates that ticks originated in the Carboniferous era, approximately 300 million years ago. Fossil records also support that ticks were blood-suckers of dinosaurs 100 million years ago. The unusual adaptation of tick physiology that directly reflects the challenges of their fluctuating environment is incomparable to any other blood feeding arthropod. The pharmacopeia of tick salivary proteins is an arsenal for ticks to counteract host defense mechanisms. Although tick salivary proteins belong to known structural families, the function of these salivary proteins has diversified throughout tick evolution. Besides causing direct damage associated with blood feeding, and in some cases toxicity, ticks transmit a wide variety of pathogens, including bacteria, viruses, protozoa, and helminths. New genetic variants of these pathogens frequently emerge with an unforeseen impact on human and animal health. In addition to pathogens, ticks harbor some complex microbial communities that influence tick-pathogen interactions and potentially tick physiology. Currently, tick control overuse acaricides with substantial drawbacks that include environmental damage, human poisonings and the emergence of multiacaricide-resistant ticks. Anti-tick vaccines are an alternative for the control of one-host ticks (e.g., Rhipicephalus microplus). Implementing vaccination, however, has significant limitations - specifically against ticks that fed on multiple hosts during their life cycle. The aim of this Special Issue, ‘New Frontiers in Tick Research’, is to explore the research landscape to find novel developments that may impact tick biology, tick-borne pathogen epidemiology, and strategies for controlling ticks and tick-borne pathogens.

Dr. Alejandro Cabezas-Cruz
Dr. Ladislav Šimo
Dr. James J. Valdés
Dr. Dasiel Obregón
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the collection website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pathogens is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Vector physiology
  • Structural biology of vector/viral proteins
  • Functional vector metagenomics
  • Factors shaping the structure of vector microbiome
  • Emerging vector-borne pathogens
  • Vector-host-pathogen interactions
  • Challenges in vector-borne pathogen detection
  • Drug discovery in vector-borne pathogens
  • Biocontrol of vectors
  • Advanced tools in vector researh

Published Papers (20 papers)

2021

Jump to: 2020

Open AccessArticle
Tick Importin-α Is Implicated in the Interactome and Regulome of the Cofactor Subolesin
Pathogens 2021, 10(4), 457; https://doi.org/10.3390/pathogens10040457 - 11 Apr 2021
Viewed by 384
Abstract
Ticks and tick-borne diseases (TBDs) represent a burden for human and animal health worldwide. Currently, vaccines constitute the safest and most effective approach to control ticks and TBDs. Subolesin (SUB) has been identified as a vaccine antigen for the control of tick infestations [...] Read more.
Ticks and tick-borne diseases (TBDs) represent a burden for human and animal health worldwide. Currently, vaccines constitute the safest and most effective approach to control ticks and TBDs. Subolesin (SUB) has been identified as a vaccine antigen for the control of tick infestations and pathogen infection and transmission. The characterization of the molecular function of SUB and the identification of tick proteins interacting with SUB may provide the basis for the discovery of novel antigens and for the rational design of novel anti-tick vaccines. In the present study, we used the yeast two-hybrid system (Y2H) as an unbiased approach to identify tick SUB-interacting proteins in an Ixodes ricinus cDNA library, and studied the possible role of SUB as a chromatin remodeler through direct interaction with histones. The Y2H screening identified Importin-α as a potential SUB-interacting protein, which was confirmed in vitro in a protein pull-down assay. The sub gene expression levels in tick midgut and fat body were significantly higher in unfed than fed female ticks, however, the importin-α expression levels did not vary between unfed and fed ticks but tended to be higher in the ovary when compared to those in other organs. The effect of importin-α RNAi was characterized in I. ricinus under artificial feeding conditions. Both sub and importin-α gene knockdown was observed in all tick tissues and, while tick weight was significantly lower in sub RNAi-treated ticks than in controls, importin-α RNAi did not affect tick feeding or oviposition, suggesting that SUB is able to exert its function in the absence of Importin-α. Furthermore, SUB was shown to physically interact with histone 4, which was corroborated by protein pull-down and western blot analysis. These results confirm that by interacting with numerous tick proteins, SUB is a key cofactor of the tick interactome and regulome. Further studies are needed to elucidate the nature of the SUB-Importin-α interaction and the biological processes and functional implications that this interaction may have. Full article
Show Figures

Figure 1

Open AccessArticle
Development of a Multiplex PCR and Magnetic DNA Capture Assay for Detecting Six Species Pathogens of the Genera Anaplasma and Ehrlichia in Canine, Bovine, Caprine and Ovine Blood Samples from Grenada, West Indies
Pathogens 2021, 10(2), 192; https://doi.org/10.3390/pathogens10020192 - 10 Feb 2021
Viewed by 581
Abstract
Infections with tick-borne pathogens belonging to Anaplasma/Ehrlichia in various vertebrate hosts are a persistent problem resulting in nonspecific clinical signs during early infection. Diagnosis of single and multi-infections with these pathogens, causing diseases in companion/agricultural animals and people, remains a challenge. Traditional methods [...] Read more.
Infections with tick-borne pathogens belonging to Anaplasma/Ehrlichia in various vertebrate hosts are a persistent problem resulting in nonspecific clinical signs during early infection. Diagnosis of single and multi-infections with these pathogens, causing diseases in companion/agricultural animals and people, remains a challenge. Traditional methods of diagnosis, such as microscopy and serology, have low sensitivity and specificity. Polymerase chain reaction (PCR) assays are widely used to detect early-phase infections, since these have high sensitivity and specificity. We report the development and validation of an assay involving PCR followed by magnetic capture method using species-specific oligonucleotides to detect six Anaplasma/Ehrlichia species pathogens in canine, bovine, caprine, and ovine blood samples. Overall, the assay application to 455 samples detected 30.1% (137/455) positives for one or more out of six screened pathogens. Single-pathogen infections were observed in 94.9% (130/137) of the positive samples, while co-infections were detected in 5.1% (7/137). Anaplasma marginale infection in cattle had the highest detection rate (34.4%), followed by canines positive for Anaplasma platys (16.4%) and Ehrlichia canis (13.9%). The assay aided in documenting the first molecular evidence for A. marginale in cattle and small ruminants and Ehrlichia chaffeensis and Ehrlichia ewingii in dogs in the Caribbean island of Grenada. Full article
Show Figures

Figure 1

Open AccessArticle
Characterization of the Rhipicephalus (Boophilus) microplus Sialotranscriptome Profile in Response to Theileria equi Infection
Pathogens 2021, 10(2), 167; https://doi.org/10.3390/pathogens10020167 - 04 Feb 2021
Viewed by 382
Abstract
This study intends to characterize the sialotranscriptome profile of Rhipicephalus (Boophilus) microplus in response to Theileria equi and identify genes of interest with differential genomic expression, indicating relevant targets in the tick–protozoan interactions. The experimental design consisted of RNA sequencing from uninfected and [...] Read more.
This study intends to characterize the sialotranscriptome profile of Rhipicephalus (Boophilus) microplus in response to Theileria equi and identify genes of interest with differential genomic expression, indicating relevant targets in the tick–protozoan interactions. The experimental design consisted of RNA sequencing from uninfected and T. equi-infected R. microplus salivary glands (SGs) to obtain transcriptomic profiles for characterization and comparison. A total of 288,952 transcripts were obtained from both tick profiles, 3456 transcripts (p < 0.05) differentially expressed in response to T. equi infection. The uninfected SGs’ registered 231,179 transcripts, of which 155,359 were annotated. The most transcribed sequences were female-specific histamine binding protein and lipocalins. Regarding the T. equi-infected SGs, from the 238,964 assembled transcripts, 163,564 were annotated. The most transcribed sequences were histone demethylase JARID1 and Y-box-binding protein. Five transcripts (cystatin, arginase, nuclear factor κB kinase inhibitor subunit β (IκB), IκB delta, lysosomal-trafficking regulator, and reeler protein) presented the gene ontology (GO) category “response to protozoan” and were exclusively displayed in the T. equi-infected profile. The transcriptome of T. equi was also analyzed, registering 4728 hits. The study’s genetic and molecular information would be of great value for future studies and biotechnological applications envisaging disease control. Full article
Show Figures

Figure 1

Open AccessReview
Challenges in Tick-Borne Pathogen Detection: The Case for Babesia spp. Identification in the Tick Vector
Pathogens 2021, 10(2), 92; https://doi.org/10.3390/pathogens10020092 - 20 Jan 2021
Viewed by 586
Abstract
The causative agents of Babesiosis are intraerythrocytic protozoa of the genus Babesia. Babesia parasites are present around the world, affecting several mammals including humans, pets and livestock, hence its medical and veterinary relevance. Babesia spp. detection in its invertebrate host is a [...] Read more.
The causative agents of Babesiosis are intraerythrocytic protozoa of the genus Babesia. Babesia parasites are present around the world, affecting several mammals including humans, pets and livestock, hence its medical and veterinary relevance. Babesia spp. detection in its invertebrate host is a main point in understanding the biology of the parasite to acquire more knowledge on the host–Babesia–vector interactions, as increasing knowledge of the Babesia lifecycle and babesiosis epidemiology can help prevent babesiosis outbreaks in susceptible mammals. The aim of the present review is to highlight the newest findings in this field, based on a bibliographic compilation of research studies recently carried out for the detection of the main Babesia species found in tick vectors affecting mammalian hosts, including the different tick stages such as adult ticks, larvae, nymphs and eggs, as well as the detection method implemented: microscopic tools for parasite identification and molecular tools for parasite DNA detection by conventional PCR, nested-PCR, PCR-RFLP, PCR-RLB hybridization, real time-PCR, LAMP and RAP assays. Although molecular identification of Babesia parasites has been achieved in several tick species and tissue samples, it is still necessary to carry out transmission experiments through biological models to confirm the vectorial capacity of various tick species. Full article
Show Figures

Figure 1

2020

Jump to: 2021

Open AccessArticle
Closing the Gaps to Understand the Tick Transmission of Anaplasma marginale among Giant Anteaters (Myrmecophaga tridactyla) in Argentina
Pathogens 2020, 9(12), 1033; https://doi.org/10.3390/pathogens9121033 - 09 Dec 2020
Viewed by 498
Abstract
Anaplasma marginale, a well-known cattle pathogen of tropical and subtropical world regions, has been previously molecularly characterized in a giant anteater (Myrmecophaga tridactyla) from Corrientes, Argentina. Ticks or other hematophagous arthropod involved in the wild transmission cycle remained unknown. The [...] Read more.
Anaplasma marginale, a well-known cattle pathogen of tropical and subtropical world regions, has been previously molecularly characterized in a giant anteater (Myrmecophaga tridactyla) from Corrientes, Argentina. Ticks or other hematophagous arthropod involved in the wild transmission cycle remained unknown. The aim of the present study was to analyze the simultaneous occurrence of A. marginale in blood samples and ticks from giant anteaters from Corrientes in order to investigate if ticks could be relevant in the transmission among these mammals. Blood samples from 50 giant anteaters collected in different years and 26 ticks Amblyomma dubitatum and A. sculptum were studied through the molecular amplification of two unequivocal species-specific genes from A. marginale: msp5 and msp1β. Twenty five giant anteaters and tick organs (salivary glands, gut and oviduct) from 11 ticks tested positive to the A. marginale DNA amplification. The further molecular characterization through MSP1a tandem repeats analysis revealed the presence of genotypes circulating among giant anteaters that had been previously identified in cattle blood samples from the same geographical region. These results confirm the presence of A. marginale in giant anteaters in Corrientes and suggests that A. dubitatum and A. sculptum ticks could be involved in the transmission among giant anteaters. Future studies will determine the role of these tick species in the wild transmission cycle in the study area and the eventual connection with the domestic cycle. Full article
Show Figures

Graphical abstract

Open AccessArticle
Anaplasma phagocytophilum and Babesia Species of Sympatric Roe Deer (Capreolus capreolus), Fallow Deer (Dama dama), Sika Deer (Cervus nippon) and Red Deer (Cervus elaphus) in Germany
Pathogens 2020, 9(11), 968; https://doi.org/10.3390/pathogens9110968 - 20 Nov 2020
Cited by 1 | Viewed by 543
Abstract
(1) Background: Wild cervids play an important role in transmission cycles of tick-borne pathogens; however, investigations of tick-borne pathogens in sika deer in Germany are lacking. (2) Methods: Spleen tissue of 74 sympatric wild cervids (30 roe deer, 7 fallow deer, 22 sika [...] Read more.
(1) Background: Wild cervids play an important role in transmission cycles of tick-borne pathogens; however, investigations of tick-borne pathogens in sika deer in Germany are lacking. (2) Methods: Spleen tissue of 74 sympatric wild cervids (30 roe deer, 7 fallow deer, 22 sika deer, 15 red deer) and of 27 red deer from a farm from southeastern Germany were analyzed by molecular methods for the presence of Anaplasma phagocytophilum and Babesia species. (3) Results: Anaplasma phagocytophilum and Babesia DNA was demonstrated in 90.5% and 47.3% of the 74 combined wild cervids and 14.8% and 18.5% of the farmed deer, respectively. Twelve 16S rRNA variants of A. phagocytophilum were delineated. While the infection rate for A. phagocytophilum among the four cervid species was similar (71.4% to 100%), it varied significantly for Babesia between roe deer (73.3%), fallow deer (14.3%), sika deer (27.3%) and red deer (40.0%). Deer ≤2 years of age tested significantly more often positive than the older deer for both A. phagocytophilum and Babesia species. (4) Conclusions: This study confirms the widespread occurrence of A. phagocytophilum and Babesia species in wild cervids and farmed red deer in Germany and documents the co-occurrence of the two tick-borne pathogens in free-ranging sika deer. Full article
Show Figures

Figure 1

Open AccessReview
Systematic Review of Ticks and Tick-Borne Pathogens of Small Ruminants in Pakistan
Pathogens 2020, 9(11), 937; https://doi.org/10.3390/pathogens9110937 - 11 Nov 2020
Cited by 1 | Viewed by 1194
Abstract
Ticks and tick-borne diseases (TTBDis) are a major constraint to the health and production of small ruminants in Pakistan. Despite being the subject of intermittent studies over the past few decades, comprehensive information on the epidemiology and control of TTBDis is lacking. Herein, [...] Read more.
Ticks and tick-borne diseases (TTBDis) are a major constraint to the health and production of small ruminants in Pakistan. Despite being the subject of intermittent studies over the past few decades, comprehensive information on the epidemiology and control of TTBDis is lacking. Herein, we have systematically reviewed the current knowledge on TTBDis of small ruminants in Pakistan. Critical appraisal of the selected 71 articles published between 1947 to 2020 revealed that morphological examination had been the most widely used method for the identification of TTBDis in Pakistan. Tick fauna comprise at least 40 species, mainly belonging to Haemaphysalis, Hyalomma and Rhipicephalus. The prevalence of ticks is the highest in summer (June–September) and it is also higher in goats than sheep. Anaplasma, Babesia and Theileria spp. are the major tick-borne pathogens (TBPs), and their prevalence is usually higher in sheep than goats. Spatio-temporal distribution, genetic diversity and control of ticks and TBPs of small ruminants as well as the competence of tick vectors for various TBPs remain to be explored. Therefore, coordinated and focused investigations are required to fill knowledge gaps in these areas to maximise the health, production and welfare of small ruminants and minimise economic losses associated with TTBDis in Pakistan. Full article
Show Figures

Figure 1

Open AccessArticle
Molecular Diagnosis, Prevalence and Importance of Zoonotic Vector-Borne Pathogens in Cuban Shelter Dogs—A Preliminary Study
Pathogens 2020, 9(11), 901; https://doi.org/10.3390/pathogens9110901 - 28 Oct 2020
Viewed by 678
Abstract
The present study aimed to determine the prevalence of zoonotic vector-borne pathogens, including Anaplasma platys, Anaplasma phagocytophilum, Borrelia burgdorferi sensu lato, Ehrlichia canis and Rickettsia spp. in shelter dogs from Cuba. Blood samples were collected from 100 shelter dogs and examined [...] Read more.
The present study aimed to determine the prevalence of zoonotic vector-borne pathogens, including Anaplasma platys, Anaplasma phagocytophilum, Borrelia burgdorferi sensu lato, Ehrlichia canis and Rickettsia spp. in shelter dogs from Cuba. Blood samples were collected from 100 shelter dogs and examined by molecular methods. Overall, 85 (85%; 95% CI: 77.88–92.12) dogs tested positive for at least one vector-borne pathogen using species-specific qPCR assays. Among the positive samples, E. canis was the most prevalent 62% (95% CI: 52.32–71.68), followed by A. platys 40% (95% CI: 30.23–49.77) and Rickettsia felis 27% (95% CI: 18.15–35.85), whereas 36% (95% CI: 26.43–45.57) showed co-infections. All samples were negative for A. phagocytophilum and B. burgdorferi s.l. The presence of 248 Rhipicephalus sanguineus ticks collected from the dogs was not statistically associated with the occurrence of infections. Thrombocytopenia was the most frequent haematological alteration found in PCR-positive dogs; it was statistically associated with the presence of E. canis, as well as co-infections (p < 0.05). The phylogenetic analyses of A. platys and E. canis based on 16S rRNA, groEL and gltA genes showed a low genetic diversity between Cuban strains. The present study demonstrates the high prevalence of vector-borne pathogens with zoonotic potential in shelter dogs from Cuba. Full article
Show Figures

Figure 1

Open AccessArticle
Multiple Antigenic Peptide-Based Vaccines Targeting Ixodes ricinus Neuropeptides Induce a Specific Antibody Response but Do Not Impact Tick Infestation
Pathogens 2020, 9(11), 900; https://doi.org/10.3390/pathogens9110900 - 28 Oct 2020
Cited by 1 | Viewed by 554
Abstract
Synthetic peptide vaccines were designed to target the neuropeptides innervating Ixodes ricinus salivary glands and hindgut and they were tested for their capacity to afford protective immunity against nymphs or larvae and Anaplasma phagocytophilum-infected nymph infestation, in mice and sheep, respectively. In [...] Read more.
Synthetic peptide vaccines were designed to target the neuropeptides innervating Ixodes ricinus salivary glands and hindgut and they were tested for their capacity to afford protective immunity against nymphs or larvae and Anaplasma phagocytophilum-infected nymph infestation, in mice and sheep, respectively. In both models, the assembly of SIFamide (SIFa) or myoinhibitory peptide (MIP) neuropeptides into multiple antigenic peptide constructs (MAPs) elicited a robust IgG antibody response following immunization. Nevertheless, no observable detrimental impact on nymphs was evidenced in mice, and, unfortunately, the number of engorged nymphs on sheep was insufficient for firm conclusions to be drawn, including for bacterial transmission. Regarding larvae, while vaccination of the sheep did not globally diminish tick feeding success or development, analyses of animals at the individual level revealed a negative correlation between anti-SIFa and MIP antibody levels and larva-to-nymph molting success for both antigens. Our results provide a proof of principle and precedent for the use of MAPs for the induction of immunity against tick peptide molecules. Although the present study did not provide the expected level of protection, it inaugurates a new strategy for protection against ticks based on the immunological targeting of key components of their nervous system. Full article
Show Figures

Figure 1

Open AccessArticle
Bovines Harbor a Diverse Array of Vector-Borne Pathogens in Northeast Algeria
Pathogens 2020, 9(11), 883; https://doi.org/10.3390/pathogens9110883 - 25 Oct 2020
Viewed by 749
Abstract
Arthropod-borne hemoparasites represent a serious health problem in livestock, causing significant production losses. Currently, the evidence of Anaplasma spp., Theileria spp., Babesia spp., and hemotropic Mycoplasma spp. in Algeria remains limited to a few scattered geographical regions. In this work, our objectives were [...] Read more.
Arthropod-borne hemoparasites represent a serious health problem in livestock, causing significant production losses. Currently, the evidence of Anaplasma spp., Theileria spp., Babesia spp., and hemotropic Mycoplasma spp. in Algeria remains limited to a few scattered geographical regions. In this work, our objectives were to study the prevalence of these vector-borne pathogens and to search other agents not yet described in Algeria as well as the identification of statistical associations with various risk factors in cattle in the northeast of Algeria. Among the 205 cattle blood samples tested by PCR analysis, 42.4% positive results were obtained for at least one pathogen. The overall rates of Anaplasma spp., Theileria/Babesia spp., and Mycoplasma spp. in the cattle sampled were respectively 30.7%, 18.5%, and 2.9%; co-infections with multiple species was also detected. Anaplasma spp. and Theileria/Babesia spp. were detected at a higher rate in cattle under 3 years old, according to univariate analysis. Anaplasma spp. DNA was detected more frequently in our sample in cattle living in semi extensive farming. Our study provides additional data about Anaplasma spp., Theileria/Babesia spp. and reveals for the first time that Mycoplasma wenyonii and ‘Candidatus Mycoplasma hemobos are present in cattle in Northeast Algeria. Full article
Show Figures

Figure 1

Open AccessArticle
Transstadial Transmission and Replication Kinetics of West Nile Virus Lineage 1 in Laboratory Reared Ixodes ricinus Ticks
Pathogens 2020, 9(10), 780; https://doi.org/10.3390/pathogens9100780 - 24 Sep 2020
Viewed by 639
Abstract
West Nile virus (WNV) is a mosquito-borne agent that has also been isolated from several tick species. Vector competence of Ixodes ricinus, one of the most common tick species in Europe, has been poorly investigated for WNV to date. As such, to [...] Read more.
West Nile virus (WNV) is a mosquito-borne agent that has also been isolated from several tick species. Vector competence of Ixodes ricinus, one of the most common tick species in Europe, has been poorly investigated for WNV to date. As such, to evaluate the vector competence, laboratory reared Ixodes ricinus nymphs were in vitro fed with WNV lineage 1 infectious blood, allowed to molt, and the resulting females artificially fed to study the virus transmission. Furthermore, we studied the kinetics of WNV replication in ticks after infecting nymphs using an automatic injector. Active replication of WNV was detected in injected nymphs from day 7 post-infection until 28 dpi. In the nymphs infected by artificial feeding, the transstadial transmission of WNV was confirmed molecularly in 46.7% of males, while virus transmission during in vitro feeding of I. ricinus females originating from infected nymphs was not registered. The long persistence of WNV in I. ricinus ticks did not correlate with the transmission of the virus and it is unlikely that I. ricinus represents a competent vector. However, there is a potential reservoir role that this tick species can play, with hosts potentially acquiring the viral agent after ingesting the infected ticks. Full article
Show Figures

Figure 1

Open AccessReview
Ticks and Tick-Borne Diseases in Cuba, Half a Century of Scientific Research
Pathogens 2020, 9(8), 616; https://doi.org/10.3390/pathogens9080616 - 28 Jul 2020
Cited by 4 | Viewed by 1000
Abstract
Ticks and the vast array of pathogens they transmit, including bacteria, viruses, protozoa, and helminths, constitute a growing burden for human and animal health worldwide. In Cuba, the major tropical island in the Caribbean, ticks are an important cause of vector-borne diseases affecting [...] Read more.
Ticks and the vast array of pathogens they transmit, including bacteria, viruses, protozoa, and helminths, constitute a growing burden for human and animal health worldwide. In Cuba, the major tropical island in the Caribbean, ticks are an important cause of vector-borne diseases affecting livestock production, pet animal health and, to a lesser extent, human health. The higher number of tick species in the country belong to the Argasidae family and, probably less known, is the presence of an autochthonous tick species in the island, Ixodes capromydis. Herein, we provide a comprehensive review of the ticks and tick-borne pathogens (TBPs) affecting animal and human health in Cuba. The review covers research results including ecophysiology of ticks, the epidemiology of TBPs, and the diagnostic tools used currently in the country for the surveillance of TBPs. We also introduce the programs implemented in the country for tick control and the biotechnology research applied to the development of anti-tick vaccines. Full article
Show Figures

Figure 1

Open AccessArticle
Dermacentor reticulatus and Babesia canis in Bavaria (Germany)—A Georeferenced Field Study with Digital Habitat Characterization
Pathogens 2020, 9(7), 541; https://doi.org/10.3390/pathogens9070541 - 07 Jul 2020
Cited by 1 | Viewed by 655
Abstract
The hard tick Dermacentor reticulatus transmits Babesia canis, the causative agent of canine babesiosis. Both the occurrence and local distribution of D. reticulatus as well as infection rates of questing ticks with B. canis are thus far poorly known in Bavaria, Germany. [...] Read more.
The hard tick Dermacentor reticulatus transmits Babesia canis, the causative agent of canine babesiosis. Both the occurrence and local distribution of D. reticulatus as well as infection rates of questing ticks with B. canis are thus far poorly known in Bavaria, Germany. The objectives of this study were to conduct (1) a georeferenced field study on the occurrence of D. reticulatus with digital habitat characterization and (2) a PCR analysis of D. reticulatus collected in Bavaria for infection with B. canis. Dermacentor reticulatus were collected by flagging at 60 sites specifically selected according to habitat conditions and screened individually for Babesia DNA. A digital habitat characterization for D. reticulatus was performed according to results of the field analysis including the parameters land use, proximity to water, “potential natural vegetation”, red deer corridors and climate data. Altogether, 339 D. reticulatus ticks (214 females and 125 males) were collected between 2010 and 2013 at 12 out of 60 sampling sites. All 12 sites were characterized by high humidity with marshy areas. Babesia canis DNA was detected in 1 out of 301 (0.3%) questing D. reticulatus in Bavaria. The digital habitat characterization revealed 15 forest areas in Bavaria with similar ecological characteristics as the sites positive for D. reticulatus. Full article
Show Figures

Figure 1

Open AccessArticle
Functional and Mass Spectrometric Evaluation of an Anti-Tick Antigen Based on the P0 Peptide Conjugated to Bm86 Protein
Pathogens 2020, 9(6), 513; https://doi.org/10.3390/pathogens9060513 - 25 Jun 2020
Cited by 3 | Viewed by 845
Abstract
A synthetic 20 amino acid peptide of the ribosomal protein P0 from ticks, when conjugated to keyhole limpet hemocyanin from Megathura crenulata and used as an immunogen against Rhipicephalus microplus and Rhipicephalus sanguineus s.l. species, has shown efficacies of around 90%. There is [...] Read more.
A synthetic 20 amino acid peptide of the ribosomal protein P0 from ticks, when conjugated to keyhole limpet hemocyanin from Megathura crenulata and used as an immunogen against Rhipicephalus microplus and Rhipicephalus sanguineus s.l. species, has shown efficacies of around 90%. There is also experimental evidence of a high efficacy of this conjugate against Amblyomma mixtum and Ixodes ricinus species, which suggest that this antigen could be a good broad-spectrum anti-tick vaccine candidate. In this study, the P0 peptide (pP0) was chemically conjugated to Bm86 as a carrier protein. SDS-PAGE analysis of this conjugate demonstrated that it is highly heterogeneous in size, carrying from 1 to 18 molecules of pP0 per molecule of Bm86. Forty-nine out of the 54 lysine residues and the N-terminal end of Bm86 were found partially linked to pP0 by using LC-MS/MS analysis and the combination of four different softwares. Several post-translational modifications of Bm86 protein were also identified by mass spectrometry. High immunogenicity and efficacy were achieved when dogs and cattle were vaccinated with the pP0–Bm86 conjugate and challenged with R. sanguineus s.l. and R. microplus, respectively. These results encourage the development of this antigen with promising possibilities as an anti-tick vaccine. Full article
Show Figures

Figure 1

Open AccessFeature PaperArticle
A Retrospective Assessment of Temperature Trends in Northern Europe Reveals a Deep Impact on the Life Cycle of Ixodes ricinus (Acari: Ixodidae)
Pathogens 2020, 9(5), 345; https://doi.org/10.3390/pathogens9050345 - 01 May 2020
Cited by 2 | Viewed by 796
Abstract
This study modelled the changes in the development processes of the health-threatening tick Ixodes ricinus in Northern Europe as driven by the trends of temperature (1950–2018). We used the ECA&D dataset to calculate the annual accumulated temperature to obtain the development rates of [...] Read more.
This study modelled the changes in the development processes of the health-threatening tick Ixodes ricinus in Northern Europe as driven by the trends of temperature (1950–2018). We used the ECA&D dataset to calculate the annual accumulated temperature to obtain the development rates of the oviposition, incubation, larva–nymph, and nymph–adult molts. Annual values were used to ascertain the trend in development rates of each stage. The ecological classification of Northern Europe (LANMAP2) was used to summarize results. The temperature in 1950–2018 clearly increased in the target territory. The development rates of every tested life cycle process were faster along the time series. Faster oviposition and incubation rates resulted in central Sweden, Baltic countries, and parts of Finland. Faster molting rates were observed in the same territories and in large areas of Western Norway. The trend of temperature in the period 1950–2018 shows a consistent inflection point around 1990, demonstrating that the increased annual accumulated temperature has a deeper impact on the life cycle of I. ricinus since approximately 1990. Faster development rates could be part of the processes driving the reported spread of the tick in the target area and should be considered as a serious threat to human health. Full article
Show Figures

Figure 1

Open AccessArticle
Tripartite Interactions among Ixodiphagus hookeri, Ixodes ricinus and Deer: Differential Interference with Transmission Cycles of Tick-Borne Pathogens
Pathogens 2020, 9(5), 339; https://doi.org/10.3390/pathogens9050339 - 30 Apr 2020
Cited by 3 | Viewed by 931
Abstract
For the development of sustainable control of tick-borne diseases, insight is needed in biological factors that affect tick populations. Here, the ecological interactions among Ixodiphagus hookeri, Ixodes ricinus, and two vertebrate species groups were investigated in relation to their effects on [...] Read more.
For the development of sustainable control of tick-borne diseases, insight is needed in biological factors that affect tick populations. Here, the ecological interactions among Ixodiphagus hookeri, Ixodes ricinus, and two vertebrate species groups were investigated in relation to their effects on tick-borne disease risk. In 1129 questing ticks, I. hookeri DNA was detected more often in I. ricinus nymphs (4.4%) than in larvae (0.5%) and not in adults. Therefore, we determined the infestation rate of I. hookeri in nymphs from 19 forest sites, where vertebrate, tick, and tick-borne pathogen communities had been previously quantified. We found higher than expected co-occurrence rates of I. hookeri with deer-associated Anaplasma phagocytophilum, and lower than expected rates with rodent-associated Borrelia afzelii and Neoehrlichia mikurensis. The prevalence of I. hookeri in nymphs varied between 0% and 16% and was positively correlated with the encounter probability of ungulates and the densities of all life stages of I. ricinus. Lastly, we investigated the emergence of I. hookeri from artificially fed, field-collected nymphs. Adult wasps emerged from seven of the 172 fed nymphs. From these observations, we inferred that I. hookeri is parasitizing I. ricinus larvae that are feeding on deer, rather than on rodents or in the vegetation. Since I. hookeri populations depend on deer abundance, the main propagation host of I. ricinus, these wasps have no apparent effect on tick populations. The presence of I. hookeri may directly interfere with the transmission cycle of A. phagocytophilum, but not with that of B. afzelii or N. mikurensis. Full article
Show Figures

Figure 1

Open AccessArticle
Resistance of Tick Gut Microbiome to Anti-Tick Vaccines, Pathogen Infection and Antimicrobial Peptides
Pathogens 2020, 9(4), 309; https://doi.org/10.3390/pathogens9040309 - 22 Apr 2020
Cited by 7 | Viewed by 1475
Abstract
Ixodes scapularis ticks harbor microbial communities including pathogenic and non-pathogenic microbes. Pathogen infection increases the expression of several tick gut proteins, which disturb the tick gut microbiota and impact bacterial biofilm formation. Anaplasma phagocytophilum induces ticks to express I. scapularis antifreeze glycoprotein (IAFGP), [...] Read more.
Ixodes scapularis ticks harbor microbial communities including pathogenic and non-pathogenic microbes. Pathogen infection increases the expression of several tick gut proteins, which disturb the tick gut microbiota and impact bacterial biofilm formation. Anaplasma phagocytophilum induces ticks to express I. scapularis antifreeze glycoprotein (IAFGP), a protein with antimicrobial activity, while Borrelia burgdorferi induces the expression of PIXR. Here, we tested the resistance of I. scapularis microbiome to A. phagocytophilum infection, antimicrobial peptide IAFGP, and anti-tick immunity specific to PIXR. We demonstrate that A. phagocytophilum infection and IAFGP affect the taxonomic composition and taxa co-occurrence networks, but had limited impact on the functional traits of tick microbiome. In contrast, anti-tick immunity disturbed the taxonomic composition and the functional profile of tick microbiome, by increasing both the taxonomic and pathways diversity. Mechanistically, we show that anti-tick immunity increases the representation and importance of the polysaccharide biosynthesis pathways involved in biofilm formation, while these pathways are under-represented in the microbiome of ticks infected by A. phagocytophilum or exposed to IAFGP. These analyses revealed that tick microbiota is highly sensitive to anti-tick immunity, while it is less sensitive to pathogen infection and antimicrobial peptides. Results suggest that biofilm formation may be a defensive response of tick microbiome to anti-tick immunity. Full article
Show Figures

Figure 1

Open AccessArticle
Efficient Transovarial Transmission of Babesia Spp. in Rhipicephalus microplus Ticks Fed on Water Buffalo (Bubalus bubalis)
Pathogens 2020, 9(4), 280; https://doi.org/10.3390/pathogens9040280 - 11 Apr 2020
Cited by 2 | Viewed by 857
Abstract
Water buffaloes can be infected by tick-borne pathogens (TBPs) in endemic areas where cattle and buffalo coexist. Among TBPs affecting buffaloes is the Apicomplexan hemoparasites Babesia bovis and B. bigemina, transmitted by Rhipicephalus microplus ticks. However, little empirical evidence exists on whether [...] Read more.
Water buffaloes can be infected by tick-borne pathogens (TBPs) in endemic areas where cattle and buffalo coexist. Among TBPs affecting buffaloes is the Apicomplexan hemoparasites Babesia bovis and B. bigemina, transmitted by Rhipicephalus microplus ticks. However, little empirical evidence exists on whether buffalo can support TBPs’ infection and transmission. A cohort study was designed to measure the infestation levels of R. microplus in buffaloes as well as the ability of buffalo-fed ticks to transmit B. bovis and B. bigemina to their offspring. Tick infestation of different life stages was quantified in cattle and buffalo kept in field conditions in western Cuba. Engorged adult female ticks were allowed to lay eggs in controlled conditions of humidity and temperature, and reproductive parameters were measured and analyzed. Hosts and tick larvae were tested for the presence of Babesia spp. using species-specific qPCR assays. Tick infestation was not observed in adult buffaloes. However, buffalo and cattle calves were equally infested, although the larval survival rate was higher in cattle calves than in buffalo calves. All larval pools (31) obtained from the adult female ticks were positive for B. bovis, whereas only 68% (21/31) was positive for B. bigemina. Among the 10 larval pools negative for B. bigemina, three proceeded from adult females fed on Babesia-negative buffaloes. The other seven pools were from Babesia-positive animals, three from cattle and four from buffalo calves. Babesia infection levels in tick larvae, quantified by qPCR, were similar in female ticks fed on buffalo and bovine calves. We conclude that water buffalo can sustain tick vector populations and support Babesia infection in levels high enough as to be infective for ticks. Our results also validated the hypothesis that adult female ticks fed on buffalo can transmit the pathogens B. bovis and B. bigemina to their offspring. Nevertheless, further laboratory studies are needed to address the question of whether the transovarial transmission of Babesia occurs in the following settings: (1) When adult females are infected previous to the feeding on the buffalo or/and (2) when the adult females acquire the infection while feeding on the buffalo. Full article
Show Figures

Figure 1

Open AccessArticle
Upscaling the Surveillance of Tick-Borne Pathogens in the French Caribbean Islands
Pathogens 2020, 9(3), 176; https://doi.org/10.3390/pathogens9030176 - 01 Mar 2020
Cited by 5 | Viewed by 827
Abstract
Despite the high burden of vector-borne disease in (sub)tropical areas, few information are available regarding the diversity of tick and tick-borne pathogens circulating in the Caribbean. Management and control of vector-borne disease require actual epidemiological data to better assess and anticipate the risk [...] Read more.
Despite the high burden of vector-borne disease in (sub)tropical areas, few information are available regarding the diversity of tick and tick-borne pathogens circulating in the Caribbean. Management and control of vector-borne disease require actual epidemiological data to better assess and anticipate the risk of (re)emergence of tick-borne diseases in the region. To simplify and reduce the costs of such large-scale surveys, we implemented a high-throughput microfluidic real-time PCR system suitable for the screening of the main bacterial and parasitic genera involved in tick-borne disease and potentially circulating in the area. We used the new screening tool to perform an exploratory epidemiological study on 132 adult specimens of Amblyomma variegatum and 446 of Rhipicephalus microplus collected in Guadeloupe and Martinique. Not only the system was able to detect the main pathogens of the area—Ehrlichia ruminantium, Rickettsia africae, Anaplasma marginale, Babesia bigemina and Babesia bovis—but the system also provided evidence of unsuspected microorganisms in Caribbean ticks, belonging to the Anaplasma, Ehrlichia, Borrelia and Leishmania genera. Our study demonstrated how high-throughput microfluidic real-time PCR technology can assist large-scale epidemiological studies, providing a rapid overview of tick-borne pathogen and microorganism diversity, and opening up new research perspectives for the epidemiology of tick-borne pathogens. Full article
Show Figures

Figure 1

Open AccessReview
Evaluation of Disease Causality of Rare Ixodes ricinus-Borne Infections in Europe
Pathogens 2020, 9(2), 150; https://doi.org/10.3390/pathogens9020150 - 24 Feb 2020
Cited by 10 | Viewed by 1384
Abstract
In Europe, Ixodes ricinus ticks transmit pathogens such as Borrelia burgdorferi sensu lato and tick-borne encephalitis virus (TBEV). In addition, there is evidence for transmission to humans from I. ricinus of Anaplasma phagocytophilum, Babesia divergens, Babesia microti, Babesia venatorum, Borrelia miyamotoi [...] Read more.
In Europe, Ixodes ricinus ticks transmit pathogens such as Borrelia burgdorferi sensu lato and tick-borne encephalitis virus (TBEV). In addition, there is evidence for transmission to humans from I. ricinus of Anaplasma phagocytophilum, Babesia divergens, Babesia microti, Babesia venatorum, Borrelia miyamotoi, Neoehrlichia mikurensis, Rickettsia helvetica and Rickettsia monacensis. However, whether infection with these potential tick-borne pathogens results in human disease has not been fully demonstrated for all of these tick-borne microorganisms. To evaluate the available evidence for a causative relation between infection and disease, the current study analyses European case reports published from 2008 to 2018, supplemented with information derived from epidemiological and experimental studies. The evidence for human disease causality in Europe found in this review appeared to be strongest for A. phagocytophilum and B. divergens. Nonetheless, some knowledge gaps still exist. Importantly, comprehensive evidence for pathogenicity is lacking for the remaining tick-borne microorganisms. Such evidence could be gathered best through prospective studies, for example, studies enrolling patients with a fever after a tick bite, the development of specific new serological tools, isolation of these microorganisms from ticks and patients and propagation in vitro, and through experimental studies. Full article
Show Figures

Figure 1

Planned Papers

The below list represents only planned manuscripts. Some of these manuscripts have not been received by the Editorial Office yet. Papers submitted to MDPI journals are subject to peer-review.

 

 

Back to TopTop