Aqueous Radical Photopolymerization Catalyzed by Resorufin
Abstract
1. Introduction
2. Experimental Section
2.1. Materials
2.2. Characterizations
2.3. Photopolymerization
3. Results and Discussions
3.1. Photocatalytic Activity of Resorufin
3.2. Photopolymerization of DMA Catalyzed by Resorufin
3.3. Effect of PMDETA on Photopolymerization of DMA Catalyzed by Resorufin
3.4. Temporal Control of Aqueous Radical Photopolymerization Catalyzed by Resorufin
3.5. Photopolymerization of Other Water-Soluble Monomers
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tomal, W.; Ortyl, J. Water-soluble photoinitiators in biomedical applications. Polymers 2020, 12, 1073. [Google Scholar] [CrossRef] [PubMed]
- Yagci, Y.; Jockusch, S.; Turro, N.J. Photoinitiated polymerization: Advances, challenges, and opportunities. Macromolecules 2010, 43, 6245–6260. [Google Scholar] [CrossRef]
- Zhao, X.; Zhao, Y.; Li, M.-D.; Li, Z.A.; Peng, H.; Xie, T.; Xie, X. Efficient 3D printing via photooxidation of ketocoumarin based photopolymerization. Nat. Commun. 2021, 12, 2873. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, A.; Jin, J. Photopolymerization in 3D printing. ACS Appl. Polym. Mater. 2019, 1, 593–611. [Google Scholar] [CrossRef]
- Ribas-Massonis, A.; Cicujano, M.; Duran, J.; Besalú, E.; Poater, A. Free-radical photopolymerization for curing products for refinish coatings market. Polymers 2022, 14, 2856. [Google Scholar] [CrossRef]
- Corrigan, N.; Boyer, C. In the Limelight: 2D and 3D Materials via Photo-Controlled Radical Polymerization. Trends Chem. 2020, 2, 689–706. [Google Scholar] [CrossRef]
- Chen, M.; Zhong, M.; Johnson, J.A. Light-Controlled Radical Polymerization: Mechanisms, Methods, and Applications. Chem. Rev. 2016, 116, 10167–10211. [Google Scholar] [CrossRef]
- Fors, B.P.; Hawker, C.J. Control of a Living Radical Polymerization of Methacrylates by Light. Angew. Chem. Int. Ed. 2012, 51, 8850–8853. [Google Scholar] [CrossRef]
- Kottisch, V.; Michaudel, Q.; Fors, B.P. Photocontrolled Interconversion of Cationic and Radical Polymerizations. J. Am. Chem. Soc. 2017, 139, 10665–10668. [Google Scholar] [CrossRef]
- Pan, X.C.; Tasdelen, M.A.; Laun, J.; Junkers, T.; Yagci, Y.; Matyjaszewski, K. Photomediated controlled radical polymerization. Prog. Polym. Sci. 2016, 62, 73–125. [Google Scholar] [CrossRef]
- Peterson, B.M.; Kottisch, V.; Supej, M.J.; Fors, B.P. On Demand Switching of Polymerization Mechanism and Monomer Selectivity with Orthogonal Stimuli. ACS Cent. Sci. 2018, 4, 1228–1234. [Google Scholar] [CrossRef] [PubMed]
- Shanmugam, S.; Xu, J.; Boyer, C. Photocontrolled living polymerization systems with reversible deactivations through electron and energy transfer. Macromol. Rapid Commun. 2017, 38, 1700143. [Google Scholar] [CrossRef] [PubMed]
- Ohtsuki, A.; Lei, L.; Tanishima, M.; Goto, A.; Kaji, H. Photocontrolled Organocatalyzed Living Radical Polymerization Feasible over a Wide Range of Wavelengths. J. Am. Chem. Soc. 2015, 137, 5610–5617. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Cui, F.; Sui, Y.; Yan, J. Radical chemistry in polymer science: An overview and recent advances. Beilstein J. Org. Chem. 2023, 19, 1580–1603. [Google Scholar] [CrossRef]
- Bongiovanni, R.; Vacche, S.D.; Vitale, A. Photoinduced Processes as a Way to Sustainable Polymers and Innovation in Polymeric Materials. Polymers 2021, 13, 2293. [Google Scholar] [CrossRef]
- Bian, C.; Zhou, Y.-N.; Guo, J.-K.; Luo, Z.-H. Aqueous metal-free atom transfer radical polymerization: Experiments and model-based approach for mechanistic understanding. Macromolecules 2018, 51, 2367–2376. [Google Scholar] [CrossRef]
- Corbin, D.A.; Miyake, G.M. Photoinduced Organocatalyzed Atom Transfer Radical Polymerization (O-ATRP): Precision Polymer Synthesis Using Organic Photoredox Catalysis. Chem. Rev. 2022, 122, 1830–1874. [Google Scholar] [CrossRef]
- Matsui, J.K.; Lang, S.B.; Heitz, D.R.; Molander, G.A. Photoredox-mediated routes to radicals: The value of catalytic radical generation in synthetic methods development. ACS Catal. 2017, 7, 2563–2575. [Google Scholar] [CrossRef]
- Wei, D.; Xu, Y.; Liu, C.; Zhai, Y.; Chen, H.; Bai, L.; Yang, H.; Yang, L.; Wang, W.; Niu, Y. Visible light-induced metal-free atom transfer radical polymerization: An efficient approach to polyacrylonitrile. J. Polym. Sci. Part A Polym. Chem. 2019, 57, 1265–1269. [Google Scholar] [CrossRef]
- You, J.; Du, Y.; Xue, T.; Bao, B.; Hu, T.; Ye, Y.; Wang, T. The three-component photoinitiating systems based on flavonol sulfonate and application in 3D printing. Dye. Pigment. 2022, 197, 109899. [Google Scholar] [CrossRef]
- Ibrahim, A.; Stefano, L.D.; Tarzi, O.; Tar, H.; Ley, C.; Allonas, X. High-Performance Photoinitiating Systems for Free Radical Photopolymerization. Application to Holographic Recording. Photochem. Photobiol. 2013, 89, 1283–1290. [Google Scholar] [CrossRef]
- Bao, Y. Recent trends in advanced photoinitiators for vat photopolymerization 3D printing. Macromol. Rapid Commun. 2022, 43, 2200202. [Google Scholar] [CrossRef]
- Ibrahim, A.; Allonas, X.; Ley, C.; Kawamura, K.; Berneth, H.; Bruder, F.K.; Fäcke, T.; Hagen, R.; Hönel, D.; Rölle, T. High performance photoinitiating systems for holography recording: Need for a full control of primary processes. Chem. A Eur. J. 2014, 20, 15102–15107. [Google Scholar] [CrossRef] [PubMed]
- Fouassier, J.P.; Lalevée, J. Photoinitiators for Polymer Synthesis. Scope, Reactivity, and Efficiency; John Wiley & Sons: Hoboken, NJ, USA, 2012; Volume 125. [Google Scholar]
- Müller, S.M.; Schlögl, S.; Wiesner, T.; Haas, M.; Griesser, T. Recent advances in type I photoinitiators for visible light induced photopolymerization. ChemPhotoChem 2022, 6, e202200091. [Google Scholar] [CrossRef]
- Shao, J.; Huang, Y.; Fan, Q. Visible light initiating systems for photopolymerization: Status, development and challenges. Polym. Chem. 2014, 5, 4195–4210. [Google Scholar] [CrossRef]
- Tehfe, M.-A.; Dumur, F.; Graff, B.; Clément, J.-L.; Gigmes, D.; Morlet-Savary, F.; Fouassier, J.-P.; Lalevée, J. New Cleavable Photoinitiator Architecture with Huge Molar Extinction Coefficients for Polymerization in the 340–450 nm Range. Macromolecules 2013, 46, 736–746. [Google Scholar] [CrossRef]
- Nitti, A.; Martinelli, A.; Batteux, F.; Protti, S.; Fagnoni, M.; Pasini, D. Blue light driven free-radical polymerization using arylazo sulfones as initiators. Polym. Chem. 2021, 12, 5747–5751. [Google Scholar] [CrossRef]
- Balcerak, A.; Kabatc-Borcz, J.; Czech, Z.; Bartkowiak, M. Latest Advances in Highly Efficient Dye-Based Photoinitiating Systems for Radical Polymerization. Polymers 2023, 15, 1148. [Google Scholar] [CrossRef]
- Dumur, F. Recent advances on visible light Phenothiazine-based photoinitiators of polymerization. Eur. Polym. J. 2022, 165, 110999. [Google Scholar] [CrossRef]
- Gómez, M.L.; Previtali, C.M.; Montejano, H.A.; Bertolotti, S.G. Photoreaction and photopolymerization studies on phenoxazin dyes/diphenyliodonium chloride salt. J. Photochem. Photobiol. A Chem. 2007, 188, 83–89. [Google Scholar] [CrossRef]
- Sun, K.; Xiao, P.; Dumur, F.; Lalevée, J. Organic dye-based photoinitiating systems for visible-light-induced photopolymerization. J. Polym. Sci. 2021, 59, 1338–1389. [Google Scholar] [CrossRef]
- Fouassier, J.-P.; Morlet-Savary, F.; Lalevée, J.; Allonas, X.; Ley, C. Dyes as photoinitiators or photosensitizers of polymerization reactions. Materials 2010, 3, 5130–5142. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Borjigin, T.; Schmitt, M.; Morlet-Savary, F.; Xiao, P.; Lalevée, J. High-Performance Photoinitiating Systems for LED-Induced Photopolymerization. Polymers 2023, 15, 342. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; He, X.; Xin, Y.; Zhang, Y.; Zhang, D.; Duan, L.; Zou, Y. New application of multiresonance organic delayed fluorescence dyes: High-performance photoinitiating systems for acrylate and epoxy photopolymerization and photoluminescent pattern Preparation. ACS Appl. Mater. Interfaces 2024, 16, 30344–30354. [Google Scholar] [CrossRef]
- Villegas, L.; Encinas, M.; Rufs, A.; Bueno, C.; Bertolotti, S.; Previtali, C. Aqueous photopolymerization with visible-light photoinitiators: Acrylamide polymerization photoinitiated with a phenoxazine dye/amine system. J. Polym. Sci. Part A Polym. Chem. 2001, 39, 4074–4082. [Google Scholar] [CrossRef]
- Christmann, J.; Ley, C.; Allonas, X. Comprehensive Study of the Synergistic Effect in Photocyclic Three-Component Initiating System for Radical Polymerization. Macromolecules 2025, 58, 5444–5455. [Google Scholar] [CrossRef]
- Berneth, H.; Bruder, F.K.; Fäcke, T.; Hansen, S.; Kawamura, K.; Pitzer, L.; Kern, S.; Wewer, B.; Rölle, T. A new three-component photo-initiating system for visible light recording of volume holograms with single-pulsed laser. Polymers 2021, 13, 3517. [Google Scholar] [CrossRef]
- Fouassier, J.-P.; Lalevée, J. Photoinitiators: Structures, Reactivity and Applications in Polymerization; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar]
- Fouassier, J.; Allonas, X.; Burget, D. Photopolymerization reactions under visible lights: Principle, mechanisms and examples of applications. Prog. Org. Coat. 2003, 47, 16–36. [Google Scholar] [CrossRef]
- Chen, H.; Zhu, D.; Kavalli, T.; Xiao, P.; Schmitt, M.; Lalevée, J. Photopolymerization using bio-sourced photoinitiators. Polym. Chem. 2023, 14, 3543–3568. [Google Scholar] [CrossRef]
- Zeng, Z.; Zeng, Y.; Zhang, F.-A.; Xu, X. Aqueous metal-free atom transfer radical polymerization with biocompatible photocatalyst: Controlled synthesis of thermo-responsive PDMA in water. Polym. Chem. 2017, 8, 1972–1977. [Google Scholar]
- Lang, M.; Hirner, S.; Wiesbrock, F.; Fuchs, P. A Review on Modeling Cure Kinetics and Mechanisms of Photopolymerization. Polymers 2022, 14, 2074. [Google Scholar] [CrossRef]
- Tehfe, M.A.; Louradour, F.; Lalevée, J.; Fouassier, J.-P. Photopolymerization Reactions: On the Way to a Green and Sustainable Chemistry. Appl. Sci. 2013, 3, 490–514. [Google Scholar] [CrossRef]
- Behar-Cohen, F.; Baillet, G.; de Ayguavives, T.; Garcia, P.O.; Krutmann, J.; Peña-García, P.; Reme, C.; Wolffsohn, J.S. Ultraviolet damage to the eye revisited: Eye-sun protection factor (E-SPF®), a new ultraviolet protection label for eyewear. Clin. Ophthalmol. 2014, 8, 87–104. [Google Scholar] [CrossRef] [PubMed]
- Françon, A.; Behar-Cohen, F.; Torriglia, A. The blue light hazard and its use on the evaluation of photochemical risk for domestic lighting. An in vivo study. Environ. Int. 2024, 184, 108471. [Google Scholar] [CrossRef] [PubMed]
- Sadhu, C.; Mitra, A.K. Synthetic, biological and optoelectronic properties of phenoxazine and its derivatives: A state of the art review. Mol. Divers. 2024, 28, 965–1007. [Google Scholar] [CrossRef]
- Pearson, R.M.; Lim, C.H.; McCarthy, B.G.; Musgrave, C.B.; Miyake, G.M. Organocatalyzed Atom Transfer Radical Polymerization Using N-Aryl Phenoxazines as Photoredox Catalysts. J. Am. Chem. Soc. 2016, 138, 11399–11407. [Google Scholar] [CrossRef]
- Bian, C.; Zhou, Y.-N.; Deetz, J.D.; Luo, Z.-H. Experimental and computational investigation of oxidative quenching governed aqueous organocatalyzed atom transfer radical polymerization. Chem. Eng. J. 2019, 362, 721–730. [Google Scholar] [CrossRef]
- Bian, C.; Zhou, Y.-N.; Guo, J.-K.; Luo, Z.-H. Visible light induced organocatalyzed atom transfer radical polymerization in aqueous media. Polym. Chem. 2021, 12, 3401–3408. [Google Scholar]
- McCarthy, B.G.; Pearson, R.M.; Lim, C.-H.; Sartor, S.M.; Damrauer, N.H.; Miyake, G.M. Structure-Property Relationships for Tailoring Phenoxazines as Reducing Photoredox Catalysts. J. Am. Chem. Soc. 2018, 140, 5088–5101. [Google Scholar] [CrossRef]
- Park, G.S.; Back, J.; Choi, E.M.; Lee, E.; Son, K.-s. Visible light-mediated metal-free atom transfer radical polymerization with N-trifluoromethylphenyl phenoxazines. Eur. Polym. J. 2019, 117, 347–352. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, W.; Zhang, Y.; Wang, Y.; Tian, Y.; Fang, L.; Ba, X. Photoredox Organocatalysts with Thermally Activated Delayed Fluorescence for Visible-Light-Driven Atom Transfer Radical Polymerization. Macromolecules 2021, 54, 4633–4640. [Google Scholar] [CrossRef]
- Glass, R.H.; Ericsson, S.A.; Ericsson, R.J.; Drouin, M.T.; Marcoux, L.J.; Sullivan, H. The resazurin reduction test provides an assessment of sperm activity. Fertil. Steril. 1991, 56, 743–746. [Google Scholar] [CrossRef] [PubMed]
- Ibanez, D.; Izquierdo-Bote, D.; Perez-Junquera, A.; González-García, M.B.; Hernandez-Santos, D.; Fanjul-Bolado, P. Raman and fluorescence spectroelectrochemical monitoring of resazurin-resorufin fluorogenic system. Dye. Pigment. 2020, 172, 107848. [Google Scholar] [CrossRef]
- Bueno, C.; Villegas, M.L.; Bertolotti, S.G.; Previtali, C.M.; Neumann, M.G.; Encinas, M.V. The excited-state interaction of resazurin and resorufin with aminesin aqueous solutions. Photophysics and photochemical reaction. Photochem. Photobiol. 2002, 76, 385–390. [Google Scholar] [CrossRef]
- Borra, R.C.; Lotufo, M.A.; Gagioti, S.M.; Barros Fde, M.; Andrade, P.M. A simple method to measure cell viability in proliferation and cytotoxicity assays. Braz. Oral. Res. 2009, 23, 255–262. [Google Scholar] [CrossRef] [PubMed]
- O’brien, J.; Wilson, I.; Orton, T.; Pognan, F. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur. J. Biochem. 2000, 267, 5421–5426. [Google Scholar] [CrossRef]
- Vieira-da-Silva, B.; Castanho, M.A. Resazurin reduction-based assays revisited: Guidelines for accurate reporting of relative differences on metabolic status. Molecules 2023, 28, 2283. [Google Scholar] [CrossRef]
- Cao, X.; Song, Y.; Fan, S.; Kai, J.; Yang, X.; Chen, L. Optimization of Ethoxyresorufin-O-deethylase Determination in the Microsomes of Earthworms and Its Induction by Polycyclic Aromatic Hydrocarbons. CLEAN–Soil. Air Water 2014, 42, 1121–1125. [Google Scholar] [CrossRef]
- Dzwonkowska-Zarzycka, M.; Sionkowska, A. Photoinitiators for Medical Applications—The Latest Advances. Molecules 2024, 29, 3898. [Google Scholar] [CrossRef]
- Ruccolo, S.; Qin, Y.; Schnedermann, C.; Nocera, D.G. General Strategy for Improving the Quantum Efficiency of Photoredox Hydroamidation Catalysis. J. Am. Chem. Soc. 2018, 140, 14926–14937. [Google Scholar] [CrossRef]
- Feng, W.; Zhu, S.; Luo, X.; Zhang, F.; Zhu, J. Aqueous synthesis of multiblock copolymers via light mediated copper(II)-catalyzed polymerization without external deoxygenation. Polymer 2021, 219, 123537. [Google Scholar]
- Liu, L.; Yi, Y. Photo-mediated metal free atom transfer radical polymerization of acrylamide in water. J. Appl. Polym. Sci. 2018, 135, 46567. [Google Scholar] [CrossRef]
- Lopez, V.; Boyer, S.G.; Zhu, J.; Xu, J.; Boyer, C. Additive-free visible-light-induced metal-free atom transfer radical polymerization in water by naturally occurring chlorophyll a. Polym. Chem. 2016, 7, 4784–4790. [Google Scholar]
- Xu, X.; Xu, X.; Zeng, Y.; Zhang, F.-A. Oxygen-tolerant photo-induced metal-free atom transfer radical polymerization. J. Photochem. Photobiol. A Chem. 2021, 411, 113191. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, L.; Cheng, Z.; Zhu, X. Metal-free photoinduced electron transfer–atom transfer radical polymerization (PET–ATRP) via a visible light organic photocatalyst. Polym. Chem. 2016, 7, 689–700. [Google Scholar] [CrossRef]
- Carmean, R.N.; Becker, T.E.; Sims, M.B.; Sumerlin, B.S. Ultra-high molecular weights via aqueous reversible-deactivation radical polymerization. Chem 2017, 2, 93–101. [Google Scholar] [CrossRef]
- Oja, S.M.; Guerrette, J.P.; David, M.R.; Zhang, B. Fluorescence-Enabled Electrochemical Microscopy with Dihydroresorufin as a Fluorogenic Indicator. Anal. Chem. 2014, 86, 6040–6048. [Google Scholar] [CrossRef]






| Entry | [M]:[I]:[PMDETA]:[Res] | Conv. (%) b | (kg/mol) | (kg/mol) a | Đ a | (%) |
|---|---|---|---|---|---|---|
| 1 | 200:1:0.1:0.01 | 78.3 | 15.5 | 91.0 | 1.32 | 17.0 |
| 2 c | 200:1:0.1:0.01 | - | - | - | - | - |
| 3 | 200:1:0.1:0 | 2.2 | - | - | - | - |
| 4 | 200:0:0.1:0.01 | 1.9 | - | - | - | - |
| 5 | 200:1:0:0.01 | 0.5 | - | - | - | - |
| 6 d | 200:1:0.1:0.01 | 0.5 | - | - | - | - |
| Entry | [M]:[I]:[PMDETA]:[Res] | Conv. (%) b | (kg/mol) | (kg/mol) a | Đ a | (%) |
|---|---|---|---|---|---|---|
| 1 | 200:1:0.1:0.01 | 78.3 | 15.5 | 91.0 | 1.32 | 17.0 |
| 7 | 200:1:1:0.01 | 77.1 | 15.3 | 195.8 | 1.60 | 7.8 |
| 8 | 200:1:3: 0.01 | 23.3 | 4.6 | 62.4 | 1.69 | 7.4 |
| 9 | 200:1:5: 0.01 | 18.7 | 3.7 | 50.6 | 1.51 | 7.3 |
| Entry | Monomer | Conv. (%) b | (kg/mol) | (kg/mol) a | Đ a | (%) |
|---|---|---|---|---|---|---|
| 1 | DMA | 78.30 | 15.5 | 91.0 | 1.32 | 17.0 |
| 10 | PEGA-480 | 46.79 | 44.9 | 97.2 | 1.36 | 46.2 |
| 11 c | NIPAM | 40.35 | 9.2 | 148.5 | 1.19 | 6.2 |
| 12 d | AM | 41.67 | 5.9 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zhou, W.; Liu, C. Aqueous Radical Photopolymerization Catalyzed by Resorufin. Organics 2026, 7, 5. https://doi.org/10.3390/org7010005
Zhou W, Liu C. Aqueous Radical Photopolymerization Catalyzed by Resorufin. Organics. 2026; 7(1):5. https://doi.org/10.3390/org7010005
Chicago/Turabian StyleZhou, Wenqiao, and Chunming Liu. 2026. "Aqueous Radical Photopolymerization Catalyzed by Resorufin" Organics 7, no. 1: 5. https://doi.org/10.3390/org7010005
APA StyleZhou, W., & Liu, C. (2026). Aqueous Radical Photopolymerization Catalyzed by Resorufin. Organics, 7(1), 5. https://doi.org/10.3390/org7010005

