Metalloenzyme-like Catalytic System for the Epoxidation of Olefins with Dioxygen Under Ambient Conditions
Abstract
1. Introduction
2. Materials and Methods
2.1. General Experimental Information
2.2. Typical Procedures for the Epoxidation Reaction
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Schmidt, F.; Cokoja, M. Supramolecular concepts for the biphasic epoxidation of olefins using aqueous hydrogen peroxide. Green Chem. 2021, 23, 708–722. [Google Scholar] [CrossRef]
- Philip, R.M.; Radhika, S.; Abdulla, C.M.A.; Anilkumar, G. Recent trends and prospects in homogeneous manganese-catalysed epoxidation. Adv. Synth. Catal. 2021, 363, 1272–1289. [Google Scholar] [CrossRef]
- Sathicq, Á.G.; Pizzio, L.R.; Vázquez, P.G.; Tundo, P.; Aricò, F.; Romanelli, G.P. Keggin heteropolyacid as catalyst for olefin epoxidation: A multiphase approach. Sustain. Chem. Pharm. 2020, 15, 100201. [Google Scholar] [CrossRef]
- Qi, Y.; Tuo, Y.; Zhu, Y.; Wei, W.; Wang, M.; Zhao, Y.; Chen, D.; Feng, X. Advances in catalyst design for electrocatalytic epoxidation of olefins. Chem. Eng. Sci. 2025, 306, 121273. [Google Scholar] [CrossRef]
- Jiao, M.; Matsunaga, H.; Ishizuka, T. A simple, iron-catalyzed, pyridine-assisted hydrogen peroxide epoxidation system. Chem. Pharm. Bull. 2011, 59, 799–801. [Google Scholar] [CrossRef]
- Hu, L.; Shi, L.; Hong, H.; Li, M.; Bao, Q.; Tang, J.; Ge, J.; Lu, J.; Cao, X.; Gu, H. Catalytic epoxidation of stilbene with FePt@Cu nanowires and molecular oxygen. Chem. Commun. 2010, 46, 8591–8593. [Google Scholar] [CrossRef]
- Guo, M.; Corona, T.; Ray, K.; Nam, W. Heme and nonheme high-valent iron and manganese oxo cores in biological and abiological oxidation reactions. ACS Cent. Sci. 2019, 5, 13–28. [Google Scholar] [CrossRef]
- Bryliakov, K.P. Catalytic asymmetric oxygenations with the environmentally benign oxidants H2O2 and O2. Chem. Rev. 2017, 117, 11406–11459. [Google Scholar] [CrossRef] [PubMed]
- Hill, A.G.; Castillo, M.C.; Bacsa, J.; Otte, K.S.; Soper, J.D. Redox-active ligands permit multielectron O2 homolysis and O-atom transfer at exceptionally high-valent vanadyl complexes. J. Am. Chem. Soc. 2025, 147, 13356–13369. [Google Scholar] [CrossRef]
- Yamaguchi, K.; Uemura, Y.; Sugimoto, H.; Ito, R.; Morimoto, Y.; Itoh, S. Mechanistic studies on catalytic alkane oxidation by Murahashi’s O2/copper(II)/aldehyde system. Catal. Sci. Technol. 2023, 13, 5859–5867. [Google Scholar] [CrossRef]
- Vicens, L.; Olivo, G.; Costas, M. Rational design of bioinspired catalysts for selective oxidations. ACS Catal. 2020, 10, 8611–8631. [Google Scholar] [CrossRef]
- Rebilly, J.N.; Colasson, B.; Bistri, O.; Over, D.; Reinaud, O. Biomimetic cavity-based metal complexes. Chem. Soc. Rev. 2015, 44, 467–489. [Google Scholar] [CrossRef]
- Zhao, P.; Chen, J.; Ma, N.C.; Chen, J.; Qin, X.; Liu, C.; Yao, F.; Yao, L.; Jin, L.; Cong, Z. Enabling highly (R)-enantioselective epoxidation of styrene by engineering unique non-natural P450 peroxygenases. Chem. Sci. 2021, 12, 6307–6314. [Google Scholar] [CrossRef]
- Ghosh, S.; Baltussen, M.G.; Ivanov, N.M.; Haije, R.; Jakštaitė, M.; Zhou, T.; Huck, W.T.S. Exploring emergent properties in enzymatic reaction networks: Design and control of dynamic functional systems. Chem. Rev. 2024, 124, 2553–2582. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Fang, S.; Gao, H.; Qin, Z.; Fan, D.; Li, N.; Wu, Z.; Chen, H. Mechanistic insights into enantiocontrolling of styrene monooxygenase-catalyzed epoxidation of olefins. ACS Catal. 2024, 14, 2246–2251. [Google Scholar] [CrossRef]
- Estrada-Montaño, A.S.; Gómez-Benítez, V.; Camacho-Dávila, A.; Rivera, E.; Morales-Morales, D.; Zaragoza-Galán, G. Metalloporphyrins: Ideal catalysts for olefin epoxidations. J. Porphyr. Phthalocya. 2022, 26, 821–836. [Google Scholar] [CrossRef]
- Zhao, M.; Wu, C.-D. Synthesis and post-metalation of a covalent-porphyrinic framework for highly efficient aerobic epoxidation of olefins. Catal. Commun. 2017, 99, 146–149. [Google Scholar] [CrossRef]
- Pereira, M.M.; Dias, L.D.; Calvete, M.J.F. Metalloporphyrins: Bioinspired oxidation catalysts. ACS Catal. 2018, 8, 10784–10808. [Google Scholar] [CrossRef]
- Ahmad, I.; Shagufta; Rehman, S. Metal-porphyrin in epoxidation of olefins: Recent advances. Tetrahedron 2022, 104, 132604. [Google Scholar] [CrossRef]
- Maid, H.; Bohm, P.; Huber, S.M.; Bauer, W.; Hummel, W.; Jux, N.; Groger, H. Iron catalysis for in situ regeneration of oxidized cofactors by activation and reduction of molecular oxygen: A synthetic metalloporphyrin as a biomimetic NAD(P)H oxidase. Angew. Chem. Int. Ed. 2011, 50, 2397–2400. [Google Scholar] [CrossRef]
- Berijani, K.; Farokhi, A.; Hosseini-Monfared, H.; Janiak, C. Enhanced enantioselective oxidation of olefins catalyzed by Mn-porphyrin immobilized on graphene oxide. Tetrahedron 2018, 74, 2202–2210. [Google Scholar] [CrossRef]
- Liu, X.H.; Yu, H.Y.; Xue, C.; Zhou, X.T.; Ji, H.B. Cyclohexene promoted efficient biomimetic oxidation of alcohols to carbonyl compounds catalyzed by manganese porphyrin under mild conditions. Chin. J. Chem. 2020, 38, 458–464. [Google Scholar] [CrossRef]
- Gong, Z.; Wang, L.; Xu, Y.; Xie, D.; Qi, X.; Nam, W.; Guo, M. Enhanced reactivities of iron(IV)-oxo porphyrin species in oxidation reactions promoted by intramolecular hydrogen-Bonding. Adv. Sci. 2024, 11, e2310333. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Jiang, Z.; Fukuzumi, S.; Nam, W.; Wang, B. Artificial nonheme iron and manganese oxygenases for enantioselective olefin epoxidation and alkane hydroxylation reactions. Coordin. Chem. Rev. 2020, 421, 213443. [Google Scholar] [CrossRef]
- Chatterjee, S.; Paine, T.K. Dioxygen reduction and bioinspired oxidations by non-heme iron(II)-α-hydroxy acid complexes. Acc. Chem. Res. 2023, 56, 3175–3187. [Google Scholar] [CrossRef]
- Biswas, J.P.; Ansari, M.; Paik, A.; Sasmal, S.; Paul, S.; Rana, S.; Rajaraman, G.; Maiti, D. Effect of the ligand backbone on the reactivity and mechanistic paradigm of non-heme iron(IV)-oxo during olefin epoxidation. Angew. Chem. Int. Ed. 2021, 60, 14030–14039. [Google Scholar] [CrossRef] [PubMed]
- Ottenbacher, R.V.; Bryliakova, A.A.; Kurganskii, V.I.; Prikhodchenko, P.V.; Medvedev, A.G.; Bryliakov, K.P. Bioinspired non-heme Mn catalysts for regio- and stereoselective oxyfunctionalizations with H2O2. Chem. Eur. J. 2023, 29, e202302772. [Google Scholar] [CrossRef]
- Yadav, O.; Kumar, M.; Mohapatra, R.K.; Gupta, M.K.; Ansari, M.; Ansari, A. Mechanistic insights on the epoxidation of alkenes by high-valent non-heme Fe(IV) and Fe(v) oxidants: A comparative theoretical study. New J. Chem. 2024, 48, 6132–6141. [Google Scholar] [CrossRef]
- Kal, S.; Xu, S.; Que, L., Jr. Bio-inspired nonheme iron oxidation catalysis: Involvement of oxoiron(V) oxidants in cleaving strong C-H bonds. Angew. Chem. Int. Ed. 2020, 59, 7332–7349. [Google Scholar] [CrossRef]
- Bryliakov, K.P. Mechanisms of C(sp3)–H and C=C selective oxidative heterofunctionalizations by non-heme Fe and Mn mimics of oxygenase enzymes. Coord. Chem. Rev. 2024, 508, 215793. [Google Scholar] [CrossRef]
- Li, Y.Y.; Li, X.H.; An, Z.X.; Chu, Y.; Wang, X.L. Room-temperature olefin epoxidation reaction by two 2D cobalt metal-organic complexes under O2 atmosphere: Coordination and structural regulation. Chin. Chem. Lett. 2025, 36, 109716. [Google Scholar] [CrossRef]
- Trehoux, A.; Roux, Y.; Guillot, R.; Mahy, J.P.; Avenier, F. Catalytic oxidation of dibenzothiophene and thioanisole by a diiron(III) complex and hydrogen peroxide. J. Mol. Catal. A Chem. 2015, 396, 40–46. [Google Scholar] [CrossRef]
- Wang, B.; Lee, Y.M.; Clémancey, M.; Seo, M.S.; Sarangi, R.; Latour, J.M.; Nam, W. Mononuclear nonheme high-spin iron(III)-acylperoxo complexes in olefin epoxidation and alkane hydroxylation reactions. J. Am. Chem. Soc. 2016, 138, 2426–2436. [Google Scholar] [CrossRef]
- Devi, T.; Lee, Y.-M.; Nam, W.; Fukuzumi, S. Metal ion-coupled electron-transfer reactions of metal-oxygen complexes. Coordin. Chem. Rev. 2020, 410, 213219. [Google Scholar] [CrossRef]
- Chen, Y.; Song, H.; Hao, Y.; Lui, M.Y.; Wong, W.L.; Lam, W.W.Y.; Chan, B.; Shi, H.; Man, W.L. Selective aerobic peroxidation of styrene catalyzed by a cobalt tert-butylperoxo complex. JACS Au 2025, 5, 1090–1095. [Google Scholar] [CrossRef]
- Ward, A.L.; Elbaz, L.; Kerr, J.B.; Arnold, J. Nonprecious metal catalysts for fuel cell applications: Electrochemical dioxygen activation by a series of first row transition metal tris(2-pyridylmethyl)amine complexes. Inorg. Chem. 2012, 51, 4694–4706. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xiang, R.; Du, X.; Ding, Y.; Ma, B. An efficient oxygen evolving catalyst based on a μ-O diiron coordination complex. Chem. Commun. 2014, 50, 12779–12782. [Google Scholar] [CrossRef] [PubMed]
- Lei, L.; Chen, Y.; Feng, Z.; Deng, C.; Xiao, Y. Bioinspired manganese complex for room-temperature oxidation of primary amines to imines by t-butyl hydroperoxide. Inorg. Chim. Acta 2021, 519, 120282. [Google Scholar] [CrossRef]
- Shin, B.-K.; Kim, Y.; Kim, M.; Han, J. Synthesis, structure and catalase activity of the [TPA2Mn2(μ-Cl)2]2+ complex. Polyhedron 2007, 26, 4557–4566. [Google Scholar] [CrossRef]
- He, Z.; Craig, D.C.; Colbran, S.B. Structures and properties of 6-aryl substituted tris(2-pyridylmethyl)amine transition metal complexes. J. Chem. Soc., Dalton Trans. 2002, 22, 4224–4235. [Google Scholar] [CrossRef]
- Allen, S.E.; Walvoord, R.R.; Padilla-Salinas, R.; Kozlowski, M.C. Aerobic copper-catalyzed organic reactions. Chem. Rev. 2013, 113, 6234–6458. [Google Scholar] [CrossRef]
- Jia, Y.; Alothman, Z.A.; Liang, R.; Cha, S.; Li, X.; Ouyang, W.; Zheng, A.; Osman, S.M.; Luque, R.; Sun, Y. Immobilization of (tartrate-salen)Mn(III) polymer complexes into SBA-15 for catalytic asymmetric epoxidation of alkenes. Mol. Catal. 2020, 495, 111146. [Google Scholar] [CrossRef]
- He, X.; Chen, L.; He, Q.; Xiao, H.; Zhou, X.; Ji, H. Self-assembled metalloporphyrins-inorganic hybrid flowers and their application to efficient epoxidation of olefins. J. Chem. Technol. Biotechnol. 2017, 92, 2594–2605. [Google Scholar] [CrossRef]
- Chen, L.; Yang, Y.; Guo, Z.; Jiang, D. Highly efficient activation of molecular oxygen with nanoporous metalloporphyrin frameworks in heterogeneous systems. Adv. Mater. 2011, 23, 3149–3154. [Google Scholar] [CrossRef] [PubMed]



![]() | ||||
|---|---|---|---|---|
| Entry | Catalyst | Conversion b (%) | Yield b (%) | TOF c (h−1) |
| 1 | - | 4 | 4 | - |
| 2 | Zn(TPA)Cl2 | 5 | 4 | 1200 |
| 3 | Ni(TPA)Cl2 | 6 | 6 | 1440 |
| 4 | Co(TPA)Cl2 | 10 | 9 | 2400 |
| 5 | Fe(TPA)Cl3 | 15 | 15 | 3600 |
| 6 | Cu(TPA)Cl2 | 36 | 35 | 8640 |
| 7 | Mn(TPA)Cl2 | 99 | 98 | 23,760 |
| 8 | Mn(TPA)Br2 | 98 | 94 | 23,520 |
| 9 | Mn(TPA)(ClO4)2 | 99 | 95 | 23,760 |
| 10 d | Mn(TPA)Cl2 | 64 | 63 | 30,720 |
| Entry | Solvent | Conversion b (%) | Yield b (%) |
|---|---|---|---|
| 1 | methanol | 5 | 5 |
| 2 | 2-propanol | 3 | 3 |
| 3 | acetonitrile | 99 | 93 |
| 4 | acetone | 62 | 56 |
| 5 | dichloromethane | 99 | 98 |
| 6 | toluene | 92 | 85 |
| 7 | cyclohexane | 94 | 87 |
![]() | ||||
|---|---|---|---|---|
| Entry | Olefin | Epoxide | Conversion b (%) | Yield b (%) |
| 1 | ![]() | ![]() | 99 | 98 |
| 2 | ![]() | ![]() | 99 | 97 |
| 3 | ![]() | ![]() | 99 | 98 |
| 4 | ![]() | ![]() | 99 | 99 |
| 5 | ![]() | ![]() | 99 | 98 |
| 6 | ![]() | ![]() | 90 | 90 |
| 7 | ![]() | ![]() | 98 | 96 |
| 8 | ![]() | ![]() | 99 | 98 |
| 9 | ![]() | ![]() | 98 | 96 |
| 10 c | ![]() | ![]() | 99 | 97 |
| 11 c | ![]() | ![]() | 47 | 45 |
| 12 c | ![]() | ![]() | 57 | 55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Lei, L.; Wu, L.; Qiu, Y.; Chen, Y. Metalloenzyme-like Catalytic System for the Epoxidation of Olefins with Dioxygen Under Ambient Conditions. Organics 2026, 7, 4. https://doi.org/10.3390/org7010004
Lei L, Wu L, Qiu Y, Chen Y. Metalloenzyme-like Catalytic System for the Epoxidation of Olefins with Dioxygen Under Ambient Conditions. Organics. 2026; 7(1):4. https://doi.org/10.3390/org7010004
Chicago/Turabian StyleLei, Lin, Linjian Wu, Yongjian Qiu, and Yaju Chen. 2026. "Metalloenzyme-like Catalytic System for the Epoxidation of Olefins with Dioxygen Under Ambient Conditions" Organics 7, no. 1: 4. https://doi.org/10.3390/org7010004
APA StyleLei, L., Wu, L., Qiu, Y., & Chen, Y. (2026). Metalloenzyme-like Catalytic System for the Epoxidation of Olefins with Dioxygen Under Ambient Conditions. Organics, 7(1), 4. https://doi.org/10.3390/org7010004



























