Special Issue "Health Benefits of Soybean and other Grain Legumes"

A special issue of Nutrients (ISSN 2072-6643).

Deadline for manuscript submissions: closed (31 October 2016).

Special Issue Editor

Prof. Anna Arnoldi
E-Mail Website
Guest Editor
Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Milan, Italy
Interests: development of innovative functional foods and dietary supplements from legumes for the prevention of chronic diseases and other pathologies; food protein analysis; dentification and development of innovative analytical methods for the quantification of low molecular weight bioactive components of foods

Special Issue Information

Dear Colleagues,

The mature seeds of the plants of the family Fabaceae, commonly known as “grain legumes” or “pulses”, are major foodstuffs in most countries and indispensable protein supplies for many populations. In addition, these seeds provide some health benefits, for example in the area of cardiovascular disease and diabetes prevention. The hypocholesterolemic activity of soybean protein is well known and supported by the health claim approval in numerous countries, but the consumption of this seed has other positive health outcomes that will be addressed in this special issue. Moreover, also other grain legumes contain useful bioactive small molecules, such as phytochemicals or antioxidants, and polymers. A special case is represented by grain legume proteins that can be hydrolysed to peptides characterized by a wide range of biological activities.

Prof. Anna Arnoldi
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nutrients is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • soy
  • grain legume
  • health benefit
  • bioactive peptides
  • phytochemicals
  • antioxidant compounds
  • prevention by diet

Published Papers (11 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Open AccessArticle
Equol, a Dietary Daidzein Gut Metabolite Attenuates Microglial Activation and Potentiates Neuroprotection In Vitro
Nutrients 2017, 9(3), 207; https://doi.org/10.3390/nu9030207 - 27 Feb 2017
Cited by 23
Abstract
Estrogen deficiency has been well characterized in inflammatory disorders including neuroinflammation. Daidzein, a dietary alternative phytoestrogen found in soy (Glycine max) as primary isoflavones, possess anti‐inflammatory activity, but the effect of its active metabolite Equol (7‐hydroxy‐3‐(4′‐hydroxyphenyl)‐chroman) has not been well established. In this [...] Read more.
Estrogen deficiency has been well characterized in inflammatory disorders including neuroinflammation. Daidzein, a dietary alternative phytoestrogen found in soy (Glycine max) as primary isoflavones, possess anti‐inflammatory activity, but the effect of its active metabolite Equol (7‐hydroxy‐3‐(4′‐hydroxyphenyl)‐chroman) has not been well established. In this study, we investigated the anti‐neuroinflammatory and neuroprotective effect of Equol in vitro. To evaluate the potential effects of Equol, three major types of central nervous system (CNS) cells, including microglia (BV‐2), astrocytes (C6), and neurons (N2a), were used. Effects of Equol on the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX‐2), Mitogen activated protein kinase (MAPK) signaling proteins, and apoptosis‐related proteins were measured by western blot analysis. Equol inhibited the lipopolysaccharide (LPS)‐induced TLR4 activation, MAPK activation, NF‐kB‐mediated transcription of inflammatory mediators, production of nitric oxide (NO), release of prostaglandin E2 (PGE‐2), secretion of tumor necrosis factor‐α (TNF‐α) and interleukin 6 (IL‐6), in Lipopolysaccharide (LPS)‐activated murine microglia cells. Additionally, Equol protects neurons from neuroinflammatory injury mediated by LPS‐activated microglia through downregulation of neuronal apoptosis, increased neurite outgrowth in N2a cell and neurotrophins like nerve growth factor (NGF) production through astrocytes further supporting its neuroprotective potential. These findings provide novel insight into the anti‐neuroinflammatory effects of Equol on microglial cells, which may have clinical significance in cases of neurodegeneration. Full article
(This article belongs to the Special Issue Health Benefits of Soybean and other Grain Legumes)
Show Figures

Graphical abstract

Open AccessArticle
Proteins in Soy Might Have a Higher Role in Cancer Prevention than Previously Expected: Soybean Protein Fractions Are More Effective MMP-9 Inhibitors Than Non-Protein Fractions, Even in Cooked Seeds
Nutrients 2017, 9(3), 201; https://doi.org/10.3390/nu9030201 - 27 Feb 2017
Cited by 7
Abstract
The search for anticancer MMP-9 inhibitors (MMPIs) in food products has become a major goal for research. MMPIs in soy have been related only to saponins and isoflavones, but recently, low specific protein fractions in soybeans were shown to reduce MMP-9 activity as [...] Read more.
The search for anticancer MMP-9 inhibitors (MMPIs) in food products has become a major goal for research. MMPIs in soy have been related only to saponins and isoflavones, but recently, low specific protein fractions in soybeans were shown to reduce MMP-9 activity as well. The present work aimed at comparing the MMPI potential of protein fractions (P) and non-protein fractions (NP) isolated from soybean seeds, before and after soaking and cooking, mimicking dietary exposures. Reverse and substrate zymography, as well as a fluoregenic DQ gelatin assay were used to evaluate MMP-9 activities. Colon cancer cell migration and proliferation was also tested in HT29 cells. Regarding MMP-9 inhibition, proteins in soy presented IC50 values 100 times lower than non-protein extracts, and remained active after cooking, suggesting that proteins may be more effective MMP-9 inhibitors than non-protein compounds. Using the determined IC50 concentrations, NP fractions were able to induce higher inhibitions of HT29 cell migration and proliferation, but not through MMP-9 inhibition, whilst protein fractions were shown to specifically inhibit MMP-9 activity. Overall, our results show that protein fractions in soybeans might have a higher role in soy-related cancer prevention as MMPIs than previously expected. Being nontoxic and active at lower concentrations, the discovery of these heat-resistant specific MMPI proteins in soy can be of significant importance for cancer preventive diets, particularly considering the increasing use of soy proteins in food products and the controversy around isoflavones amongst consumers. Full article
(This article belongs to the Special Issue Health Benefits of Soybean and other Grain Legumes)
Show Figures

Figure 1

Open AccessArticle
Adding Agnus Castus and Magnolia to Soy Isoflavones Relieves Sleep Disturbances Besides Postmenopausal Vasomotor Symptoms-Long Term Safety and Effectiveness
Nutrients 2017, 9(2), 129; https://doi.org/10.3390/nu9020129 - 13 Feb 2017
Cited by 3
Abstract
The effectiveness for vasomotor symptoms and sleep disorders plus the long-term safety of a nutraceutical combination of agnus-castus and magnolia extracts combined with soy isoflavones (SI) and lactobacilli were assessed in postmenopausal women. A controlled study was carried out in menopausal women comparing [...] Read more.
The effectiveness for vasomotor symptoms and sleep disorders plus the long-term safety of a nutraceutical combination of agnus-castus and magnolia extracts combined with soy isoflavones (SI) and lactobacilli were assessed in postmenopausal women. A controlled study was carried out in menopausal women comparing this nutraceutical combination (ESP group) with a formulation containing isoflavones alone (C group) at the dosage recommended. The Kuppermann index, The Pittsburgh Sleep Quality Index (PSQI), and Short Form 36 (SF-36) were determined at baseline, three, six and 12 months. Endometrial thickness, mammary density and liver function were evaluated at baseline and after 12 months. One hundred and eighty women were enrolled in the study (100 in the ESP group and 80 in the C group). At the end of the treatment, mammary density, endometrial thickness, and hepatic function did not show substantial differences between groups. The Kuppermann index and particularly the tendency for hot flashes progressively and significantly decreased in frequency and severity during ESP versus C treatment. At the same time, a significant increase in sleep quality and psychophysical wellness parameters was observed in the ESP versus C groups. No adverse events were observed. Agnus-castus and magnolia, combined with SI + lactobacilli, can effectively and safely be used in symptomatic postmenopausal women, mainly when quality of sleep is the most disturbing complaint. The endometrium, mammary glands and liver function were unaffected after 12 months of treatment. Full article
(This article belongs to the Special Issue Health Benefits of Soybean and other Grain Legumes)
Show Figures

Figure 1

Open AccessArticle
Dietary Fiber Analysis of Four Pulses Using AOAC 2011.25: Implications for Human Health
Nutrients 2016, 8(12), 829; https://doi.org/10.3390/nu8120829 - 21 Dec 2016
Cited by 9
Abstract
Chickpeas, common beans, dry peas, and lentils are pulse crops that have been a cornerstone of the human diet since the inception of agriculture. However, the displacement of pulses from the diet by low fiber protein alternatives has resulted in a pervasive deficiency [...] Read more.
Chickpeas, common beans, dry peas, and lentils are pulse crops that have been a cornerstone of the human diet since the inception of agriculture. However, the displacement of pulses from the diet by low fiber protein alternatives has resulted in a pervasive deficiency referred to as the dietary fiber gap. Using an analytical method American Association of Analytical Chemists (AOAC) 2011.25 that conforms to the Codex Alimentarius Commission consensus definition for dietary fiber, the fiber content of these pulse crops was evaluated in seed types used for commercial production. These pulse crops have 2 to 3 times more fiber per 100 g edible portion than other dietary staples. Moreover, there is marked variation in fiber content among cultivars of the same crop. We conclude that pulse crop consumption should be emphasized in efforts to close the dietary fiber gap. The substantial differences in fiber content among currently available cultivars within a crop can be used to further improve gains in fiber intake without the need to change dietary habits. This provides a rationale for cultivar-based food labeling. Full article
(This article belongs to the Special Issue Health Benefits of Soybean and other Grain Legumes)
Open AccessArticle
Beneficial Effects of Pterocarpan-High Soybean Leaf Extract on Metabolic Syndrome in Overweight and Obese Korean Subjects: Randomized Controlled Trial
Nutrients 2016, 8(11), 734; https://doi.org/10.3390/nu8110734 - 18 Nov 2016
Cited by 5
Abstract
Pterocarpans are known to have antifungal and anti-inflammatory properties. However, little is known about the changes in transcriptional profiles in response to a pterocarpan-high soybean leaf extract (PT). Therefore, this study investigated the effects of PT on blood glucose and lipid levels, as [...] Read more.
Pterocarpans are known to have antifungal and anti-inflammatory properties. However, little is known about the changes in transcriptional profiles in response to a pterocarpan-high soybean leaf extract (PT). Therefore, this study investigated the effects of PT on blood glucose and lipid levels, as well as on the inflammation-related gene expression based on a peripheral blood mononuclear cells (PBMCs) mRNA sequencing analysis in Korean overweight and obese subjects with mild metabolic syndrome. The participants were randomly assigned to two groups and were administered either placebo (starch, 3 g/day) or PT (2 g/day) for 12 weeks. The PT intervention did not change body weight, body fat percentage and body mass index (BMI). However, PT significantly decreased the glycosylated hemoglobin (HbA1c), plasma glucose, free fatty acid, total cholesterol, and non-HDL cholesterol levels after 12 weeks. Furthermore, PT supplementation significantly lowered the homeostatic index of insulin resistance, as well as the plasma levels of inflammatory markers. Finally, the mRNA sequencing analysis revealed that PT downregulated genes related to immune responses. PT supplementation is beneficial for the improvement of metabolic syndrome by altering the fasting blood and plasma glucose, HbA1c, plasma lipid levels and inflammation-related gene expression in PBMCs. Full article
(This article belongs to the Special Issue Health Benefits of Soybean and other Grain Legumes)
Show Figures

Figure 1

Open AccessArticle
The Effectiveness of a Bioactive Food Compound in the Lipid Control of Individuals with HIV/AIDS
Nutrients 2016, 8(10), 598; https://doi.org/10.3390/nu8100598 - 08 Oct 2016
Cited by 1
Abstract
Cardiovascular events due to decompensated lipid metabolism are commonly found in Human Immunodeficiency Virus/Acquired Immunodeficiency Syndrome (HIV/AIDS) patients using anti-retroviral therapy (HAART). Thus, the aim of this study was to identify the effect of a bioactive food compound (BFC) containing functional foods on [...] Read more.
Cardiovascular events due to decompensated lipid metabolism are commonly found in Human Immunodeficiency Virus/Acquired Immunodeficiency Syndrome (HIV/AIDS) patients using anti-retroviral therapy (HAART). Thus, the aim of this study was to identify the effect of a bioactive food compound (BFC) containing functional foods on individuals with HIV undergoing HAART. Particularly, this study aims to verify the clinical outcome in the change of the lipid profile due to the use of this compound. This study includes 115 individuals with HIV on HAART. All patients received dietary guidelines; however, sixty-one consumed BFC while fifty-one did not (NO BFC). Biochemical examinations and socio-demographic and clinical profiles were evaluated. As result, in patients using hypolipidemic and/or hypoglycemic drugs, there was 28.6% decrease in triglyceride levels (p < 0.001) in the NO BFC group, and 18.3% reduction in low density lipoprotein cholesterol (LDL-C) (p < 0.001) in the BFC group. In patients who did not use hypolipidemic and/or hypoglycemic drugs in the NO BFC group, there was 30.6% increase in triglycerides, 11.3% total cholesterol and 15.3% LDL-C levels (p < 0.001) while for the BFC group there was 4.5% reduction in total cholesterol (p < 0.001). In conclusion, this study evidenced that the dietary intervention containing BFC positively affected in lipid control, since these HIV/AIDS patients using HAART are more vulnerable to lipid disorders. Full article
(This article belongs to the Special Issue Health Benefits of Soybean and other Grain Legumes)
Show Figures

Figure 1

Open AccessArticle
Oral Administration of Fermented Soymilk Products Protects the Skin of Hairless Mice against Ultraviolet Damage
Nutrients 2016, 8(8), 514; https://doi.org/10.3390/nu8080514 - 20 Aug 2016
Cited by 3
Abstract
The protective effect of isoflavones on skin damage from ultraviolet (UV) radiation and their bioavailability were investigated in ovariectomized hairless mice fed diets composed of fermented soymilk containing aglycone forms of isoflavones or control soymilk containing glucose-conjugated forms of isoflavones. The erythema intensity [...] Read more.
The protective effect of isoflavones on skin damage from ultraviolet (UV) radiation and their bioavailability were investigated in ovariectomized hairless mice fed diets composed of fermented soymilk containing aglycone forms of isoflavones or control soymilk containing glucose-conjugated forms of isoflavones. The erythema intensity of dorsal skin was significantly higher in ovariectomized mice than in sham-operated mice (p < 0.05). The erythema intensity and epidermal thickness of dorsal skin were significantly lower in the fermented soymilk diet group than in the control diet group (each p < 0.05). Levels of cyclobutane pyrimidine dimers in dorsal skin were significantly lower in the fermented soymilk diet group than in the control group (p < 0.05). Serum and dorsal skin isoflavone concentrations were significantly higher in the fermented soymilk diet group than in the soymilk diet group (p < 0.05). These results indicate that oral administration of a fermented soymilk diet increases isoflavone concentrations in the blood and skin, effectively scavenging the reactive oxygen species generated by UV irradiation and exerting an estrogen-like activity, with a consequent protective effect on skin photodamage in hairless mice. Full article
(This article belongs to the Special Issue Health Benefits of Soybean and other Grain Legumes)
Show Figures

Graphical abstract

Open AccessArticle
Improvement of Triglyceride Levels through the Intake of Enriched-β-Conglycinin Soybean (Nanahomare) Revealed in a Randomized, Double-Blind, Placebo-Controlled Study
Nutrients 2016, 8(8), 491; https://doi.org/10.3390/nu8080491 - 11 Aug 2016
Cited by 6
Abstract
Soybean is recognized as a beneficial food with various functional components, such as β-conglycinin, which improves lipid metabolism. We evaluated the effects of the β-conglycinin-rich soybean Nanahomare on triglyceride (TG) levels. In this randomized, double-blind, placebo-controlled study, we divided 134 adult subjects into [...] Read more.
Soybean is recognized as a beneficial food with various functional components, such as β-conglycinin, which improves lipid metabolism. We evaluated the effects of the β-conglycinin-rich soybean Nanahomare on triglyceride (TG) levels. In this randomized, double-blind, placebo-controlled study, we divided 134 adult subjects into test and placebo groups that consumed processed food containing enriched-β-conglycinin soybean or low-β-conglycinin soybean. Hematological tests and body composition measurements were performed at weeks 0 (baseline), 4, 8, and 12 of the study period. TG levels significantly decreased in the test group compared with the placebo group at weeks 4 (change from baseline to week 4, placebo: 0.27 ± 44.13 mg/dL, test: −20.31 ± 43.74 mg/dL, p = 0.035) and 12 (change from baseline to week 12, placebo: −0.14 ± 65.83 mg/dL, test: −21.30 ± 46.21 mg/dL, p = 0.041). In addition, among subjects whose baseline TG levels were ≥100 mg/dL, the levels significantly improved in the test group at weeks 4 (p = 0.010) and 12 (p = 0.030), whereas the levels were not different between the test and placebo groups among those whose baseline levels were <100 mg/dL. These results suggest that the ingestion of enriched-β-conglycinin soybean improves serum TG levels. Full article
(This article belongs to the Special Issue Health Benefits of Soybean and other Grain Legumes)
Show Figures

Graphical abstract

Open AccessFeature PaperArticle
Hypocholesterolaemic Activity of Lupin Peptides: Investigation on the Crosstalk between Human Enterocytes and Hepatocytes Using a Co-Culture System Including Caco-2 and HepG2 Cells
Nutrients 2016, 8(7), 437; https://doi.org/10.3390/nu8070437 - 22 Jul 2016
Cited by 9
Abstract
Literature indicates that peptic and tryptic peptides derived from the enzymatic hydrolysis of lupin protein are able to modulate cholesterol metabolism in human hepatic HepG2 cells and that part of these peptides are absorbed in a small intestine model based on differentiated human [...] Read more.
Literature indicates that peptic and tryptic peptides derived from the enzymatic hydrolysis of lupin protein are able to modulate cholesterol metabolism in human hepatic HepG2 cells and that part of these peptides are absorbed in a small intestine model based on differentiated human Caco-2 cells. In this paper, a co-culture system, including Caco-2 and HepG2 cells, was investigated with two objectives: (a) to verify whether cholesterol metabolism in HepG2 cells was modified by the peptides absorption through Caco-2 cells; (b) to investigate how lupin peptides influence cholesterol metabolism in Caco-2 cells. The experiments showed that the absorbed peptides, not only maintained their bioactivity on HepG2 cells, but that this activity was improved by the crosstalk of the two cells systems in co-culture. In addition, lupin peptides showed a positive influence on cholesterol metabolism in Caco-2 cells, decreasing the proprotein convertase subtilisin/kexin type 9 (PCSK9) secretion. Full article
(This article belongs to the Special Issue Health Benefits of Soybean and other Grain Legumes)
Show Figures

Figure 1

Review

Jump to: Research

Open AccessReview
Beyond the Cholesterol-Lowering Effect of Soy Protein: A Review of the Effects of Dietary Soy and Its Constituents on Risk Factors for Cardiovascular Disease
Nutrients 2017, 9(4), 324; https://doi.org/10.3390/nu9040324 - 24 Mar 2017
Cited by 51
Abstract
The hypocholesterolemic effect of soy is well-documented and this has led to the regulatory approval of a health claim relating soy protein to a reduced risk of cardiovascular disease (CVD). However, soybeans contain additional components, such as isoflavones, lecithins, saponins and fiber that [...] Read more.
The hypocholesterolemic effect of soy is well-documented and this has led to the regulatory approval of a health claim relating soy protein to a reduced risk of cardiovascular disease (CVD). However, soybeans contain additional components, such as isoflavones, lecithins, saponins and fiber that may improve cardiovascular health through independent mechanisms. This review summarizes the evidence on the cardiovascular benefits of non-protein soy components in relation to known CVD risk factors such as hypertension, hyperglycemia, inflammation, and obesity beyond cholesterol lowering. Overall, the available evidence suggests non-protein soy constituents improve markers of cardiovascular health; however, additional carefully designed studies are required to independently elucidate these effects. Further, work is also needed to clarify the role of isoflavone-metabolizing phenotype and gut microbiota composition on biological effect. Full article
(This article belongs to the Special Issue Health Benefits of Soybean and other Grain Legumes)
Open AccessReview
Soy and Health Update: Evaluation of the Clinical and Epidemiologic Literature
Nutrients 2016, 8(12), 754; https://doi.org/10.3390/nu8120754 - 24 Nov 2016
Cited by 73
Abstract
Soyfoods have long been recognized as sources of high-quality protein and healthful fat, but over the past 25 years these foods have been rigorously investigated for their role in chronic disease prevention and treatment. There is evidence, for example, that they reduce risk [...] Read more.
Soyfoods have long been recognized as sources of high-quality protein and healthful fat, but over the past 25 years these foods have been rigorously investigated for their role in chronic disease prevention and treatment. There is evidence, for example, that they reduce risk of coronary heart disease and breast and prostate cancer. In addition, soy alleviates hot flashes and may favorably affect renal function, alleviate depressive symptoms and improve skin health. Much of the focus on soyfoods is because they are uniquely-rich sources of isoflavones. Isoflavones are classified as both phytoestrogens and selective estrogen receptor modulators. Despite the many proposed benefits, the presence of isoflavones has led to concerns that soy may exert untoward effects in some individuals. However, these concerns are based primarily on animal studies, whereas the human research supports the safety and benefits of soyfoods. In support of safety is the recent conclusion of the European Food Safety Authority that isoflavones do not adversely affect the breast, thyroid or uterus of postmenopausal women. This review covers each of the major research areas involving soy focusing primarily on the clinical and epidemiologic research. Background information on Asian soy intake, isoflavones, and nutrient content is also provided. Full article
(This article belongs to the Special Issue Health Benefits of Soybean and other Grain Legumes)
Back to TopTop