Special Issue "Nanotechnology for Environmental and Biomedical Research"

A special issue of Nanomaterials (ISSN 2079-4991).

Deadline for manuscript submissions: 20 April 2020.

Special Issue Editor

Dr. Giada Frenzilli
E-Mail Website
Guest Editor
University of Pisa, Department of Clinical and Experimental Medicine – Section of Applied Biology and Genetics, Pisa, Italy
Interests: Nanotoxicology; Ecotoxicology; Nanomaterials; Cellular responses; Genotoxicity

Special Issue Information

Dear Colleagues,

Among the high production and broad feasibility of nanomaterials, the application of nanotechnology includes the use of engineered nanomaterials (ENMs) to clean-up polluted media such as soils, water, air, groundwater and wastewaters, and is known as nanoremediation. Contamination by hazardous substances in environmental matrices, including landfills, oil fields, manufacturing and industrial sites, represents a global concern and needs to be remediated since it poses serious risk for the environment and human health.  Particular attention should focus on the use of medical devices and recent developments in the use of nanoparticles expressed as drug delivery systems designed to treat a wide variety of diseases. This Special Issue of Nanomaterials, “Nanotechnology for Environmental and Biomedical Research”, aims at collecting a compilation of articles that strongly demonstrate the continuous efforts in developing advanced and safe nanomaterial-based technologies for nanoremediation and drug delivery, for environmental and human health.

Dr. Giada Frenzilli
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Nanostructured materials
  • Nanotoxicology
  • Trojan horse effect
  • Nanoremediation
  • Ecosafety
  • Drug delivery

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Open AccessArticle
Pitch-Derived Activated Carbon Fibers for Emission Control of Low-Concentration Hydrocarbon
Nanomaterials 2019, 9(9), 1313; https://doi.org/10.3390/nano9091313 - 14 Sep 2019
Abstract
The unburned hydrocarbon (HC) emissions of automobiles are subject to strong regulations because they are known to be converted into fine dust, ozone, and photochemical smog. Pitch-based activated carbon fibers (ACF) prepared by steam activation can be a good solution for HC removal. [...] Read more.
The unburned hydrocarbon (HC) emissions of automobiles are subject to strong regulations because they are known to be converted into fine dust, ozone, and photochemical smog. Pitch-based activated carbon fibers (ACF) prepared by steam activation can be a good solution for HC removal. The structural characteristics of ACF were observed using X-ray diffraction. The pore characteristics were investigated using N2/77K adsorption isotherms. The butane working capacity (BWC) was determined according to ASTM D5228. From the results, the specific surface area and total pore volume of the ACF were determined to be 840–2630 m2/g and 0.33–1.34 cm3/g, respectively. The butane activity and butane retentivity of the ACF increased with increasing activation time and were observed to range between 15.78–57.33% and 4.19–11.47%, respectively. This indicates that n-butane adsorption capacity could be a function not only of the specific surface area or total pore volume but also of the sub-mesopore volume fraction in the range of 2.0–2.5 nm of adsorbents. The ACF exhibit enhanced BWC, and especially adsorption velocity, compared to commercial products (granules and pellets), with lower concentrations of n-butane due to a uniformly well-developed pore structure open directly to the outer surface. Full article
(This article belongs to the Special Issue Nanotechnology for Environmental and Biomedical Research)
Show Figures

Graphical abstract

Open AccessArticle
Antagonistic Interactions between Benzo[a]pyrene and Fullerene (C60) in Toxicological Response of Marine Mussels
Nanomaterials 2019, 9(7), 987; https://doi.org/10.3390/nano9070987 - 08 Jul 2019
Cited by 1
Abstract
This study aimed to assess the ecotoxicological effects of the interaction of fullerene (C60) and benzo[a]pyrene (B[a]P) on the marine mussel, Mytilus galloprovincialis. The uptake of nC60, B[a]P and mixtures of nC60 and B[a]P into [...] Read more.
This study aimed to assess the ecotoxicological effects of the interaction of fullerene (C60) and benzo[a]pyrene (B[a]P) on the marine mussel, Mytilus galloprovincialis. The uptake of nC60, B[a]P and mixtures of nC60 and B[a]P into tissues was confirmed by Gas Chromatography–Mass Spectrometry (GC–MS), Liquid Chromatography–High Resolution Mass Spectrometry (LC–HRMS) and Inductively Coupled Plasma Mass Spectrometer (ICP–MS). Biomarkers of DNA damage as well as proteomics analysis were applied to unravel the interactive effect of B[a]P and C60. Antagonistic responses were observed at the genotoxic and proteomic level. Differentially expressed proteins (DEPs) were only identified in the B[a]P single exposure and the B[a]P mixture exposure groups containing 1 mg/L of C60, the majority of which were downregulated (~52%). No DEPs were identified at any of the concentrations of nC60 (p < 0.05, 1% FDR). Using DEPs identified at a threshold of (p < 0.05; B[a]P and B[a]P mixture with nC60), gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis indicated that these proteins were enriched with a broad spectrum of biological processes and pathways, including those broadly associated with protein processing, cellular processes and environmental information processing. Among those significantly enriched pathways, the ribosome was consistently the top enriched term irrespective of treatment or concentration and plays an important role as the site of biological protein synthesis and translation. Our results demonstrate the complex multi-modal response to environmental stressors in M. galloprovincialis. Full article
(This article belongs to the Special Issue Nanotechnology for Environmental and Biomedical Research)
Show Figures

Figure 1

Open AccessArticle
Spectroscopic Study of the Salicyladazine Derivative–UO22+ Complex and Its Immobilization to Mesoporous Silica
Nanomaterials 2019, 9(5), 688; https://doi.org/10.3390/nano9050688 - 02 May 2019
Abstract
Uranyl ion, the most soluble toxic uranium species, is recognized as an important index for monitoring nuclear wastewater quality. The United States Environmental Protection Agency (US EPA) and the World Health Organization (WHO) prescribed 30 ppb as the allowable concentration of uranyl ion [...] Read more.
Uranyl ion, the most soluble toxic uranium species, is recognized as an important index for monitoring nuclear wastewater quality. The United States Environmental Protection Agency (US EPA) and the World Health Organization (WHO) prescribed 30 ppb as the allowable concentration of uranyl ion in drinking water. This paper reports on a nanohybrid material that can detect uranyl ions spectroscopically and act as a uranyl ion absorbent in an aqueous system. Compound 1, possessing a salicyladazine core and four acetic acid groups, was synthesized and the spectroscopic properties of its UO22+ complex were studied. Compound 1 had a strong blue emission when irradiated with UV light in the absence of UO22+ that was quenched in the presence of UO22+. According to the Job’s plot, Compound 1 formed a 1:2 complex with UO22+. When immobilized onto mesoporous silica, a small dose (0.3 wt %) of this hybrid material could remove 96% of UO22+ from 1 mL of a 100-ppb UO22+ aqueous solution. Full article
(This article belongs to the Special Issue Nanotechnology for Environmental and Biomedical Research)
Show Figures

Graphical abstract

Open AccessArticle
Combination of Roll Grinding and High-Pressure Homogenization Can Prepare Stable Bicelles for Drug Delivery
Nanomaterials 2018, 8(12), 998; https://doi.org/10.3390/nano8120998 - 03 Dec 2018
Abstract
To improve the solubility of the drug nifedipine (NI), NI-encapsulated lipid-based nanoparticles (NI-LNs) have been prepared from neutral hydrogenated soybean phosphatidylcholine and negatively charged dipalmitoylphosphatidylglycerol at a molar ratio of 5/1 using by roll grinding and high-pressure homogenization. The NI-LNs exhibited high entrapment [...] Read more.
To improve the solubility of the drug nifedipine (NI), NI-encapsulated lipid-based nanoparticles (NI-LNs) have been prepared from neutral hydrogenated soybean phosphatidylcholine and negatively charged dipalmitoylphosphatidylglycerol at a molar ratio of 5/1 using by roll grinding and high-pressure homogenization. The NI-LNs exhibited high entrapment efficiency, long-term stability, and enhanced NI bioavailability. To better understand their structures, cryo transmission electron microscopy and atomic force microscopy were performed in the present study. Imaging from both instruments revealed that the NI-LNs were bicelles. Structures prepared with a different drug (phenytoin) or with phospholipids (dimyristoylphosphatidylcholine, dipalmitoylphosphatidylcholine, and distearoylphosphatidylcholine) were also bicelles. Long-term storage, freeze-drying, and high-pressure homogenization did not affect the structures; however, different lipid ratios, or the presence of cholesterol, did result in liposomes (5/0) or micelles (0/5) with different physicochemical properties and stabilities. Considering the result of long-term stability, standard NI-LN bicelles (5/1) showed the most long-term stabilities, providing a useful preparation method for stable bicelles for drug delivery. Full article
(This article belongs to the Special Issue Nanotechnology for Environmental and Biomedical Research)
Show Figures

Graphical abstract

Review

Jump to: Research

Open AccessReview
Current Applications of Nanoemulsions in Cancer Therapeutics
Nanomaterials 2019, 9(6), 821; https://doi.org/10.3390/nano9060821 - 31 May 2019
Abstract
Nanoemulsions are pharmaceutical formulations composed of particles within a nanometer range. They possess the capacity to encapsulate drugs that are poorly water soluble due to their hydrophobic core nature. Additionally, they are also composed of safe gradient excipients, which makes them a stable [...] Read more.
Nanoemulsions are pharmaceutical formulations composed of particles within a nanometer range. They possess the capacity to encapsulate drugs that are poorly water soluble due to their hydrophobic core nature. Additionally, they are also composed of safe gradient excipients, which makes them a stable and safe option to deliver drugs. Cancer therapy has been an issue for several decades. Drugs developed to treat this disease are not always successful or end up failing, mainly due to low solubility, multidrug resistance (MDR), and unspecific toxicity. Nanoemulsions might be the solution to achieve efficient and safe tumor treatment. These formulations not only solve water-solubility problems but also provide specific targeting to cancer cells and might even be designed to overcome MDR. Nanoemulsions can be modified using ligands of different natures to target components present in tumor cells surface or to escape MDR mechanisms. Multifunctional nanoemulsions are being studied by a wide variety of researchers in different research areas mainly for the treatment of different types of cancer. All of these studies demonstrate that nanoemulsions are efficiently taken by the tumoral cells, reduce tumor growth, eliminate toxicity to healthy cells, and decrease migration of cancer cells to other organs. Full article
(This article belongs to the Special Issue Nanotechnology for Environmental and Biomedical Research)
Show Figures

Graphical abstract

Back to TopTop