(Alkyl-ω-ol)triphenyltin(IV)-Loaded Mesoporous Silica as Biocompatible Potential Neuroprotectors: Evaluation of Inhibitory Activity Against Enzymes Associated with the Pathophysiology of Alzheimer’s Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Investigated Compounds
2.2. Ellman’s Method for AChE Inhibition Assay
2.3. Computational Methods
2.3.1. DFT Method and Diffusion Coefficient Calculation
2.3.2. Molecular Docking Approach for Enzyme Inhibition Analysis
2.3.3. Computational Evaluation of Complex Stability via Molecular Dynamics Simulation
2.4. Computational Modeling of Compound Transport
3. Results and Discussion
3.1. Affinity to Acetylcholinesterase (AChE)
3.2. Molecular Docking and Intermolecular Interactions with AChE
3.3. Molecular Dynamics Simulations
3.3.1. Structural and Dynamic Stability of AChE–Ligand Complexes
3.3.2. MM/GBSA and MM/PBSA Binding Free Energy Estimates of AChE–Ligand Complexes
3.4. Modeling the Distribution of Compound Concentration in Brain Tissue
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Maccioni, R.B.; Muñoz, J.P.; Barbeito, L. The molecular bases of Alzheimer’s disease and other neurodegenerative disorders. Arch. Med. Res. 2001, 32, 367–381. [Google Scholar] [CrossRef] [PubMed]
- Matej, R.; Tesar, A.; Rusina, R. Alzheimer’s disease and other neurodegenerative dementias in comorbidity: A clinical and neuropathological overview. Clin. Biochem. 2019, 73, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Cummings, J.L.; Vinters, H.V.; Cole, G.M.; Khachaturian, Z.S. Alzheimer’s disease: Etiologies, pathophysiology, cognitive reserve, and treatment opportunities. Neurology 1998, 51 (Suppl. 1), S2–S17. [Google Scholar] [CrossRef]
- Sajjad, R.; Arif, R.; Shah, A.A.; Manzoor, I.; Mustafa, G. Pathogenesis of Alzheimer’s disease: Role of amyloid-beta and hyperphosphorylated tau protein. Indian J. Pharm. Sci. 2018, 80, 581–591. [Google Scholar] [CrossRef]
- Penke, B.; Bogár, F.; Fülöp, L. β-Amyloid and the pathomechanisms of Alzheimer’s disease: A comprehensive view. Molecules 2017, 22, 1692. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.Y.; Wang, Z.T.; Tan, L.; Yu, J.T. Tau toxicity in neurodegeneration. Mol. Neurobiol. 2022, 59, 3617–3634. [Google Scholar] [CrossRef]
- Chen, Z.R.; Huang, J.B.; Yang, S.L.; Hong, F.F. Role of cholinergic signaling in Alzheimer’s disease. Molecules 2022, 27, 1816. [Google Scholar] [CrossRef]
- Singh, A.; Kukreti, R.; Saso, L.; Kukreti, S. Oxidative stress: A key modulator in neurodegenerative diseases. Molecules 2019, 24, 1583. [Google Scholar] [CrossRef]
- Melo, A.; Monteiro, L.; Lima, R.M.; de Oliveira, D.M.; de Cerqueira, M.D.; El-Bachá, R.S. Oxidative stress in neurodegenerative diseases: Mechanisms and therapeutic perspectives. Oxid. Med. Cell. Longev. 2011, 2011, 467180. [Google Scholar] [CrossRef]
- Rekatsina, M.; Paladini, A.; Piroli, A.; Zis, P.; Pergolizzi, J.V.; Varrassi, G. Pathophysiology and therapeutic perspectives of oxidative stress and neurodegenerative diseases: A narrative review. Adv. Ther. 2020, 37, 113–139. [Google Scholar] [CrossRef]
- Thapa, S.; Lv, M.; Xu, H. Acetylcholinesterase: A primary target for drugs and insecticides. Mini Rev. Med. Chem. 2017, 17, 1665–1676. [Google Scholar] [CrossRef]
- Tripathi, A.; Srivastava, U.C. Acetylcholinesterase: A versatile enzyme of nervous system. Ann. Neurosci. 2010, 15, 106–111. [Google Scholar] [CrossRef]
- Francis, P.T.; Nordberg, A.; Arnold, S.E. A preclinical view of cholinesterase inhibitors in neuroprotection: Do they provide more than symptomatic benefits in Alzheimer’s disease? Trends Pharmacol. Sci. 2005, 26, 104–111. [Google Scholar] [CrossRef]
- Pastene-Burgos, S.; Muñoz-Nuñez, E.; Quiroz-Carreño, S.; Pastene-Navarrete, E.; Espinoza Catalan, L.; Bustamante, L.; Alarcón-Enos, J. Ceanothanes derivatives as peripheric anionic site and catalytic active site inhibitors of acetylcholinesterase: Insights for future drug design. Int. J. Mol. Sci. 2024, 25, 7303. [Google Scholar] [CrossRef]
- Walczak-Nowicka, Ł.J.; Herbet, M. Acetylcholinesterase inhibitors in the treatment of neurodegenerative diseases and the role of acetylcholinesterase in their pathogenesis. Int. J. Mol. Sci. 2021, 22, 9290. [Google Scholar] [CrossRef]
- Gamage, R.; Wagnon, I.; Rossetti, I.; Childs, R.; Niedermayer, G.; Chesworth, R.; Gyengesi, E. Cholinergic modulation of glial function during aging and chronic neuroinflammation. Front. Cell. Neurosci. 2020, 14, 577912. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.; Chen, H.Z. AChE inhibition-based multi-target-directed ligands, a novel pharmacological approach for the symptomatic and disease-modifying therapy of Alzheimer’s disease. Curr. Neuropharmacol. 2016, 14, 364–375. [Google Scholar] [CrossRef]
- Zhang, H.; Peng, Y.; Zhuo, L.; Wang, Y.; Zeng, G.; Wang, S.; Wang, Z. Recent advance on pleiotropic cholinesterase inhibitors bearing amyloid modulation efficacy. Eur. J. Med. Chem. 2022, 242, 114695. [Google Scholar] [CrossRef]
- Sun, T.; Zhen, T.; Harakandi, C.H.; Wang, L.; Guo, H.; Chen, Y.; Sun, H. New insights into butyrylcholinesterase: Pharmaceutical applications, selective inhibitors and multitarget-directed ligands. Eur. J. Med. Chem. 2024, 262, 116569. [Google Scholar] [CrossRef]
- Adeyemi, J.O.; Onwudiwe, D.C. Organotin (IV) dithiocarbamate complexes: Chemistry and biological activity. Molecules 2018, 23, 2571. [Google Scholar] [CrossRef]
- Ghazi, D.; Rasheed, Z.; Yousif, E. Review of organotin compounds: Chemistry and applications. Development 2018, 3, 4. [Google Scholar]
- Mirzaei, M.; Zarch, M.B.; Darroudi, M.; Sayyadi, K.; Keshavarz, S.T.; Sayyadi, J.; Fallah, A.; Maleki, H. Silica mesoporous structures: Effective nanocarriers in drug delivery and nanocatalysts. Appl. Sci. 2020, 10, 7533. [Google Scholar] [CrossRef]
- Vallet-Regí, M.; Schüth, F.; Lozano, D.; Colilla, M.; Manzano, M. Engineering mesoporous silica nanoparticles for drug delivery: Where are we after two decades? Chem. Soc. Rev. 2022, 51, 5365–5451. [Google Scholar] [CrossRef]
- Poovaiah, N.; Davoudi, Z.; Peng, H.; Schlichtmann, B.; Mallapragada, S.; Narasimhan, B.; Wang, Q. Treatment of neurodegenerative disorders through the blood–brain barrier using nanocarriers. Nanoscale 2018, 10, 16962–16983. [Google Scholar] [CrossRef]
- Devi, J.; Yadav, J. Recent advancements in organotin (IV) complexes as potential anticancer agents. Anticancer Agents Med. Chem. 2018, 18, 335–353. [Google Scholar] [CrossRef]
- Adeyemi, J.O.; Onwudiwe, D.C.; Ekennia, A.C.; Uwaoma, R.C.; Hosten, E.C. Synthesis, characterization and antimicrobial studies of organotin (IV) complexes of N-methyl-N-phenyldithiocarbamate. Inorg. Chim. Acta 2018, 477, 148–159. [Google Scholar] [CrossRef]
- Ward, S.G.; Taylor, R.C.; Crowe, A.J.; Balzarini, J.; De Clercq, E. Assessment of the in vitro broad-spectrum antiviral activity of some selected antitumor organotin complexes. Appl. Organomet. Chem. 1989, 3, 431–436. [Google Scholar] [CrossRef]
- Azmatullah, S.; Khan, A.U.; Qazi, N.G.; Nadeem, H.; Irshad, N. Pharmacological evaluation of newly synthesized organotin IV complex for antiulcer potential. BMC Pharmacol. Toxicol. 2022, 23, 58. [Google Scholar] [CrossRef]
- Bensing, C.; Mojić, M.; Bulatović, M.; Edeler, D.; Pérez-Quintanilla, D.; Gómez-Ruiz, S.; Maksimović-Ivanić, D.; Mijatović, S.; Kaluđerović, G.N. Effect of chain length on the cytotoxic activity of (alkyl-ω-ol) triphenyltin (IV) loaded into SBA-15 nanostructured silica and in vivo study of SBA-15~Cl|Ph3Sn(CH2)8OH. Biomater. Adv. 2022, 140, 213054. [Google Scholar] [CrossRef]
- Bensing, C.; Mojić, M.; Gómez-Ruiz, S.; Carralero, S.; Dojčinović, B.; Maksimović-Ivanić, D.; Mijatović, S.; Kaluđerović, G.N. Evaluation of functionalized mesoporous silica SBA-15 as a carrier system for Ph3Sn(CH2)3OH against the A2780 ovarian carcinoma cell line. Dalton Trans. 2016, 45, 18984–18993. [Google Scholar] [CrossRef]
- Edeler, D.; Drača, D.; Petković, V.; Natalio, F.; Maksimović-Ivanić, D.; Mijatović, S.; Schmidt, H.; Kaluđerović, G.N. Impact of the mesoporous silica SBA-15 functionalization on the mode of action of Ph3Sn(CH2)6OH. Mater. Sci. Eng. C 2019, 100, 315–322. [Google Scholar] [CrossRef]
- Maksimović-Ivanić, D.; Bulatović, M.; Edeler, D.; Bensing, C.; Golić, I.; Korać, A.; Kaluđerović, G.N.; Mijatović, S. The interaction between SBA-15 derivative loaded with Ph3Sn(CH2)6OH and human melanoma A375 cell line: Uptake and stem phenotype loss. JBIC J. Biol. Inorg. Chem. 2019, 24, 223–234. [Google Scholar] [CrossRef]
- Bulatović, M.Z.; Maksimović-Ivanić, D.; Bensing, C.; Gómez-Ruiz, S.; Steinborn, D.; Schmidt, H.; Mojić, M.; Korać, A.; Golić, I.; Pérez-Quintanilla, D.; et al. Organotin (IV)-loaded mesoporous silica as a biocompatible strategy in cancer treatment. Angew. Chem. Int. Ed. 2014, 53, 5982–5987. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.D.; Andres Jr, V.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Li, S.; Li, A.J.; Zhao, J.; Santillo, M.F.; Xia, M. Acetylcholinesterase inhibition assays for high-throughput screening. In High-Throughput Screening Assays in Toxicology; Springer: New York, NY, USA, 2022; pp. 47–58. [Google Scholar]
- Adewusi, E.A.; Steenkamp, V. In vitro screening for acetylcholinesterase inhibition and antioxidant activity of medicinal plants from southern Africa. Asian Pac. J. Trop. Med. 2011, 4, 829–835. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.W.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Dennington, R.; Keith, T.A.; Millam, J.M. GaussView, version 6; Semichem Inc.: Shawnee Mission, KS, USA, 2016. [Google Scholar]
- Zhao, Y.; Schultz, N.E.; Truhlar, D.G. Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J. Chem. Theory Comput. 2006, 2, 364–382. [Google Scholar] [CrossRef]
- Becke, A.D.; Johnson, E.R. A density-functional model of the dispersion interaction. J. Chem. Phys. 2005, 123, 154101. [Google Scholar] [CrossRef]
- Avdović, E.H.; Dimić, D.S.; Fronc, M.; Kožišek, J.; Klein, E.; Milanović, Ž.B.; Kesić, A.; Marković, Z. Structural and theoretical analysis, molecular docking/dynamics investigation of 3-(1-m-chloridoethylidene)-chromane-2,4-dione: The role of chlorine atom. J. Mol. Struct. 2021, 1231, 129962. [Google Scholar] [CrossRef]
- Mahalingam, S.; Murugesan, A.; Thiruppathiraja, T.; Lakshmipathi, S.; Makhanya, T.R.; Gengan, R.M. Green synthesis of benzimidazole derivatives by using zinc boron nitride catalyst and their application from DFT (B3LYP) study. Heliyon 2022, 8, e11432. [Google Scholar] [CrossRef]
- Avdović, E.H.; Milanović, Ž.B.; Molčanov, K.; Roca, S.; Vikić-Topić, D.; Mrkalić, E.M.; Jelić, M.R.; Marković, Z.S. Synthesis, characterization and investigating the binding mechanism of novel coumarin derivatives with human serum albumin: Spectroscopic and computational approach. J. Mol. Struct. 2022, 1254, 132366. [Google Scholar] [CrossRef]
- Milanović, Ž. Structural properties of newly 4,7-dihydroxycoumarin derivatives as potential inhibitors of XIIa, Xa, IIa factors of coagulation. J. Mol. Struct. 2024, 1298, 137049. [Google Scholar] [CrossRef]
- DiLabio, G.A.; Otero-de-la-Roza, A. Noncovalent interactions in density functional theory. Rev. Comput. Chem. 2016, 29, 1–97. [Google Scholar]
- Yu, J.; Baudrin, E.; Franco, A.A. Diffusion coefficient and viscosity of Methyl Viologen electrolyte estimation based on a Kinetic Monte Carlo computational approach coupled with the Mean Square Displacement method. Batter. Supercaps 2025, 8, e202400430. [Google Scholar] [CrossRef]
- Einstein, A. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. 1905, 517, 182–193. [Google Scholar] [CrossRef]
- Međedović, M.; Ćoćić, D.; Mijatović, A.; Simić, V.; Milanović, Ž.; Kosanić, M.; Petrović, N.; Sretenović, S.; Rilak Simović, A. In silico and in vitro biological evaluation: Distribution of Ru(III) Schiff base complexes through the pancreatic 3D model and immersed blood vessel network. J. Coord. Chem. 2024, 77, 766–785. [Google Scholar] [CrossRef]
- Atkins, P.; De Paula, J. Elements of Physical Chemistry, 6th ed.; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef]
- Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 1998, 19, 1639–1662. [Google Scholar] [CrossRef]
- Cheung, J.; Rudolph, M.J.; Burshteyn, F.; Cassidy, M.S.; Gary, E.N.; Love, J.; Height, J.J. Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J. Med. Chem. 2012, 55, 10282–10286. [Google Scholar] [CrossRef]
- Babić, S.; Marjanović, J.S.; Divac, V.M.; Klisurić, O.R.; Milivojević, D.; Bogojeski, J.V.; Kostić, M.D. Molecular docking study and in vitro evaluation of apoptotic effect of biogenic-amine-based N,O-Cu(II) complexes as potent antitumor agents. J. Coord. Chem. 2025, 78, 1007–1026. [Google Scholar] [CrossRef]
- Milanović, Ž. Urolithin D: A promising metabolite of ellagitannin in combatting oxidative stress. Chem.-Biol. Interact. 2025, 411, 111444. [Google Scholar] [CrossRef]
- Milanović, Ž.B.; Antonijević, M.R.; Amić, A.D.; Avdović, E.H.; Dimić, D.S.; Milenković, D.A.; Marković, Z.S. Inhibitory activity of quercetin, its metabolite, and standard antiviral drugs towards enzymes essential for SARS-CoV-2: The role of acid–base equilibria. RSC Adv. 2021, 11, 2838–2847. [Google Scholar] [CrossRef]
- Pantelić, L.; Škaro Bogojević, S.; Andrejević, T.P.; Pantović, B.V.; Marković, V.R.; Ašanin, D.P.; Mlanović, Ž.; Tomic Ilic, T.; Runic-Nikodinovic, J.; Glišić, B.; et al. Copper(II) and zinc(II) complexes with bacterial prodigiosin are targeting site III of bovine serum albumin and acting as DNA minor groove binders. Int. J. Mol. Sci. 2024, 25, 8395. [Google Scholar] [CrossRef]
- Amić, A.; Cagardová, D.M.; Milanović, Ž. Theoretical Study of Antioxidant and Prooxidant Potency of Protocatechuic Aldehyde. Int. J. Mol. Sci. 2025, 26, 404. [Google Scholar] [CrossRef]
- Case, D.A.; Aktulga, H.M.; Belfon, K.; Ben-Shalom, I.Y.; Berryman, J.T.; Brozell, S.R.; Cerutti, D.S.; Cheatham, T.E., III; Cisneros, G.A.; Cruzeiro, V.W.D.; et al. Amber 2023; University of California: San Francisco, CA, USA, 2023. [Google Scholar]
- Case, D.A.; Aktulga, H.M.; Belfon, K.; Cerutti, D.S.; Cisneros, G.A.; Cruzeiro, V.W.D.; Merz, K.M. AmberTools. J. Chem. Inf. Model. 2023, 63, 6183–6191. [Google Scholar] [CrossRef]
- Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general amber force field. J. Comput. Chem. 2004, 25, 1157–1174. [Google Scholar] [CrossRef]
- Li, P.; Merz, K.M. MCPB.py: A python based metal center parameter builder. J. Chem. Inf. Model. 2016, 56, 599–604. [Google Scholar] [CrossRef]
- Liu, J.; Li, D.; Liu, X. A simple and accurate algorithm for path integral molecular dynamics with the Langevin thermostat. J. Chem. Phys. 2016, 145, 024103. [Google Scholar] [CrossRef]
- Kräutler, V.; Van Gunsteren, W.F.; Hünenberger, P.H. A fast SHAKE algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations. J. Comput. Chem. 2001, 22, 501–508. [Google Scholar] [CrossRef]
- Essmann, U.; Perera, L.; Berkowitz, M.L.; Darden, T.; Lee, H.; Pedersen, L.G. A smooth particle mesh Ewald method. J. Chem. Phys. 1995, 103, 8577–8593. [Google Scholar] [CrossRef]
- Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov. 2015, 10, 449–461. [Google Scholar] [CrossRef]
- Kojic, M.; Slavkovic, R.; Zivkovic, M.; Grujovic, N.; Filipovic, N.; Milosevic, M.; Isailovic, V. PAK-FE Program for Structural Analysis, Fluid Mechanics, Coupled Problems and Biomechanics; Bioengineering R&D Center, Faculty of Technical Science: Kragujevac, Serbia, 1998; Available online: http://www.bioirc.ac.rs/index.php/software (accessed on 21 November 2018).
- Kojic, M.; Milosevic, M.; Ziemys, A. Computational Models in Biomedical Engineering: Finite Element Models Based on Smeared Physical Fields: Theory, Solutions, and Software; Academic Press: Cambridge, MA, USA, 2022. [Google Scholar]
- Kojic, M.; Milosevic, M.; Simic, V.; Koay, E.J.; Kojic, N.; Ziemys, A.; Ferrari, M. Extension of the composite smeared finite element (CSFE) to include lymphatic system in modeling mass transport in capillary systems and biological tissue. J. Serb. Soc. Comput. Mech. 2017, 11, 108. [Google Scholar] [CrossRef]
- Kojic, M. Smeared concept as a general methodology in finite element modeling of physical fields and mechanical problems in composite media. J. Serb. Soc. Comput. Mech. 2018, 12, 1–16. [Google Scholar] [CrossRef]
- Kojic, M.; Milosevic, M.; Simic, V.; Koay, E.J.; Fleming, J.B.; Nizzero, S.; Ferrari, M. A composite smeared finite element for mass transport in capillary systems and biological tissue. Comput. Methods Appl. Mech. Eng. 2017, 324, 413–437. [Google Scholar] [CrossRef]
- Kojić, M.; Filipović, N.; Stojanović, B.; Kojić, N. Computer Modeling in Bioengineering: Theoretical Background, Examples and Software; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Kojic, M.; Milosevic, M.; Kojic, N.; Starosolski, Z.; Ghaghada, K.; Serda, R.; Ziemys, A. A multi-scale FE model for convective–diffusive drug transport within tumor and large vascular networks. Comput. Methods Appl. Mech. Eng. 2015, 294, 100–122. [Google Scholar] [CrossRef]
- Milosevic, M. CAD Solid and Field—Software for Biomedical Engineering Research and Accompanied Software for the Book: “Computational Models in Biomedical Engineering—Finite Element Models Based on Smeared Physical Fields: Theory, Solutions, and Software”. 2020. Available online: https://github.com/miljanmilos/CAD-Solid-Field (accessed on 5 April 2025).
- Tata, A.M.; Velluto, L.; D’Angelo, C.; Reale, M. Cholinergic system dysfunction and neurodegenerative diseases: Cause or effect? CNS Neurol. Disord. Drug Targets 2014, 13, 1294–1303. [Google Scholar] [CrossRef]
- Nitin, V.; Anand, T.; Singh, C.K.; Sodhi, K.K. Role of organometallic complexes in targeted therapies of different diseases: Infectious diseases, cancer and neurodegenerative diseases. J. Organomet. Chem. 2024, 10222, 123389. [Google Scholar]
- Satheeshkumar, N.; Mukherjee, P.K.; Bhadra, S.; Saha, B.P. Acetylcholinesterase enzyme inhibitory potential of standardized extract of Trigonella foenum-graecum L. and its constituents. Phytomedicine 2010, 17, 292–295. [Google Scholar] [CrossRef]
- Krátký, M.; Štěpánková, Š.; Vorčáková, K.; Švarcová, M.; Vinšová, J. Novel cholinesterase inhibitors based on O-aromatic N,N-disubstituted carbamates and thiocarbamates. Molecules 2016, 21, 191. [Google Scholar] [CrossRef]
- Göçer, H.; Akincioğlu, A.; Göksu, S.; Gülçin, İ.; Supuran, C.T. Carbonic anhydrase and acetylcholinesterase inhibitory effects of carbamates and sulfamoylcarbamates. J. Enzyme Inhib. Med. Chem. 2015, 30, 316–320. [Google Scholar] [CrossRef]
- Raha, K.; Merz, K.M. A quantum mechanics-based scoring function: Study of zinc ion-mediated ligand binding. J. Am. Chem. Soc. 2004, 126, 1020–1021. [Google Scholar] [CrossRef]
- Li, P.; Song, L.F.; Merz, K.M. Parameterization of highly charged metal ions using the 12-6-4 LJ-type non-bonded model in explicit water. J. Phys. Chem. B 2015, 119, 883–895. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.; Sun, H.; Wang, J.; Wang, Z.; Liu, H.; Zhang, J.Z.; Hou, T. End-point binding free energy calculation with MM/PBSA and MM/GBSA: Strategies and applications in drug design. Chem. Rev. 2019, 119, 9478–9508. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Li, Y.; Tian, S.; Xu, L.; Hou, T. Assessing the performance of MM/PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA methodologies evaluated by various simulation protocols using PDBbind data set. Phys. Chem. Chem. Phys. 2014, 16, 16719–16729. [Google Scholar] [CrossRef]
- Freitas, R.A. Nanomedicine, Volume I: Basic Capabilities; CRC Press: Boca Raton, FL, USA, 2024. [Google Scholar]
- Fu, L.; Shi, S.; Yi, J.; Wang, N.; He, Y.; Wu, Z.; Cao, D. ADMETlab 3.0: An updated comprehensive online ADMET prediction platform enhanced with broader coverage, improved performance, API functionality and decision support. Nucleic Acids Res. 2024, 52, W422–W431. [Google Scholar] [CrossRef]
Compounds | SBA-15~Cl|Ph3SnL1 | Ph3SnL1 | SBA-15~Cl|Ph3SnL2 | Ph3SnL2 | Galantamine |
---|---|---|---|---|---|
IC50 (µM) Apparent | 23.93 ± 0.51 | 105.81 ± 0.58 | 13.44 ± 0.28 | 88.00 ± 0.51 | 15.00 ± 0.46 |
IC50 (µM) Corrected | 1.07 | – | 0.58 | – | – |
Complexes | ΔGbind | Ki (µM) | ΔGinter | ΔGvdw+hbond+desolv | ΔGelec | ΔGtotal | ΔGtor | ΔGunb |
---|---|---|---|---|---|---|---|---|
AChE | ||||||||
Ph3SnL1 | −9.65 | 0.085 | −11.57 | −11.40 | −0.17 | −1.58 | 1.92 | −1.58 |
Ph3SnL2 | −10.31 | 0.027 | −12.51 | −12.35 | −0.16 | −1.69 | 2.20 | −1.69 |
Galantamine | −8.85 | 0.330 | −9.45 | −9.05 | −0.40 | −0.77 | 0.60 | −0.77 |
Donepezil | −11.27 | 0.0056 | −13.06 | −12.96 | −0.10 | −1.02 | 1.79 | −1.2 |
Compounds | MM/GBSA | MM/PBSA |
---|---|---|
AChE-Ph3SnL1 | −29.53 | 7.82 |
AChE-Ph3SnL2 | −32.55 | 1.84 |
Compound Abbreviations (mL s−1 kg−1) | Diffusion Coefficient (mm2s−1) | Clearance Coefficient |
---|---|---|
Ph3SnL1 | 4.31 × 10−4 | 9.356 |
Ph3SnL2 | 4.24 × 10−4 | 8.015 |
Galantamine | 5.17 × 10−4 | 6.176 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milisavljević, K.; Milanović, Ž.; Matić, J.; Antonijević, M.; Simić, V.; Milošević, M.; Kosanić, M.; Kaluđerović, G.N. (Alkyl-ω-ol)triphenyltin(IV)-Loaded Mesoporous Silica as Biocompatible Potential Neuroprotectors: Evaluation of Inhibitory Activity Against Enzymes Associated with the Pathophysiology of Alzheimer’s Disease. Nanomaterials 2025, 15, 914. https://doi.org/10.3390/nano15120914
Milisavljević K, Milanović Ž, Matić J, Antonijević M, Simić V, Milošević M, Kosanić M, Kaluđerović GN. (Alkyl-ω-ol)triphenyltin(IV)-Loaded Mesoporous Silica as Biocompatible Potential Neuroprotectors: Evaluation of Inhibitory Activity Against Enzymes Associated with the Pathophysiology of Alzheimer’s Disease. Nanomaterials. 2025; 15(12):914. https://doi.org/10.3390/nano15120914
Chicago/Turabian StyleMilisavljević, Kristina, Žiko Milanović, Jovana Matić, Marko Antonijević, Vladimir Simić, Miljan Milošević, Marijana Kosanić, and Goran N. Kaluđerović. 2025. "(Alkyl-ω-ol)triphenyltin(IV)-Loaded Mesoporous Silica as Biocompatible Potential Neuroprotectors: Evaluation of Inhibitory Activity Against Enzymes Associated with the Pathophysiology of Alzheimer’s Disease" Nanomaterials 15, no. 12: 914. https://doi.org/10.3390/nano15120914
APA StyleMilisavljević, K., Milanović, Ž., Matić, J., Antonijević, M., Simić, V., Milošević, M., Kosanić, M., & Kaluđerović, G. N. (2025). (Alkyl-ω-ol)triphenyltin(IV)-Loaded Mesoporous Silica as Biocompatible Potential Neuroprotectors: Evaluation of Inhibitory Activity Against Enzymes Associated with the Pathophysiology of Alzheimer’s Disease. Nanomaterials, 15(12), 914. https://doi.org/10.3390/nano15120914