molecules-logo

Journal Browser

Journal Browser

Special Issue "Design Strategies for Metal Complexes that Activate Bio-Related Small Molecules"

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Inorganic Chemistry".

Deadline for manuscript submissions: 31 March 2023 | Viewed by 6963

Special Issue Editors

1. Department of Applied Chemistry, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota 470-0392, Japan
2. Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa, Nagoya 466-8555, Japan
Interests: bio-inorganic chemistry; dioxygen activation; dinitrogen activation; hydrogen activation; CO2 activation; NO sensor; siderophore chemistry; microbe sensor; molecular recognition; dye-sensitized solar cell
1. Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 Japan
2. Faculty of Science and Engineering, Meijo University, Nagoya, Aichi 468-8502, Japan
3. Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
Interests: artificial photosynthesis; electron transfer chemistry; organic photocatalysis; redox catalysis; dioxygen activation

Special Issue Information

Dear Colleagues,

In living organisms, there are many metalloenzymes that activate biologically active small molecules such as hydrogen, oxygen, nitrogen, methane, and carbon dioxide. Currently, the structures and functions of many of these enzymes are being clarified by excellent structural and spectroscopic analysis methods. At the same time, research is being conducted to mimic the structure and function of these enzymes using metal complexes, and to develop catalysts that can function under environmental-friendly conditions in order to contribute to our lives in the future. In this special issue, as a message to future bioinorganic chemists and catalysis researchers, we invite papers on design strategies of metals and ligands focusing on the activation of small molecules from many researchers, in this case, oxygen and nitrogen.

Prof. Dr. Hideki Masuda
Prof. Dr. Shunichi Fukuzumi
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2300 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • small molecule activation
  • dinitrogen activation
  • dioxygen activation
  • ligand design
  • design concept

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Article
Electrochemical Epoxidation Catalyzed by Manganese Salen Complex and Carbonate with Boron-Doped Diamond Electrode
Molecules 2023, 28(4), 1797; https://doi.org/10.3390/molecules28041797 - 14 Feb 2023
Viewed by 429
Abstract
Epoxides are essential precursors for epoxy resins and other chemical products. In this study, we investigated whether electrochemically oxidizing carbonate ions could produce percarbonate to promote an epoxidation reaction in the presence of appropriate metal catalysts, although Tanaka and co-workers had already completed [...] Read more.
Epoxides are essential precursors for epoxy resins and other chemical products. In this study, we investigated whether electrochemically oxidizing carbonate ions could produce percarbonate to promote an epoxidation reaction in the presence of appropriate metal catalysts, although Tanaka and co-workers had already completed a separate study in which the electrochemical oxidation of chloride ions was used to produce hypochlorite ions for electrochemical epoxidation. We found that epoxides could be obtained from styrene derivatives in the presence of metal complexes, including manganese(III) and oxidovanadium(IV) porphyrin complexes and manganese salen complexes, using a boron-doped diamond as the anode. After considering various complexes as potential catalysts, we found that manganese salen complexes showed better performance in terms of epoxide yield. Furthermore, the substituent effect of the manganese salen complex was also investigated, and it was found that the highest epoxide yields were obtained when Jacobsen’s catalyst was used. Although there is still room for improving the yields, this study has shown that the in situ electrochemical generation of percarbonate ions is a promising method for the electrochemical epoxidation of alkenes. Full article
Show Figures

Graphical abstract

Article
Catalytic Ammonia Synthesis Mediated by Molybdenum Complexes with PN3P Pincer Ligands: Influence of P/N Substituents and Molecular Mechanism
Molecules 2022, 27(22), 7843; https://doi.org/10.3390/molecules27227843 - 14 Nov 2022
Viewed by 640
Abstract
Three molybdenum trihalogenido complexes supported by different PN3P pincer ligands were synthesized and investigated regarding their activity towards catalytic N2-to-NH3 conversion. The highest yields were obtained with the H-PN3PtBu ligand. The corresponding Mo(V)-nitrido complex also [...] Read more.
Three molybdenum trihalogenido complexes supported by different PN3P pincer ligands were synthesized and investigated regarding their activity towards catalytic N2-to-NH3 conversion. The highest yields were obtained with the H-PN3PtBu ligand. The corresponding Mo(V)-nitrido complex also shows good catalytic activity. Experiments regarding the formation of the analogous Mo(IV)-nitrido complex lead to the conclusion that the mechanism of catalytic ammonia formation mediated by the title systems does not involve N-N cleavage of a dinuclear Mo-dinitrogen complex, but follows the classic Chatt cycle. Full article
Show Figures

Figure 1

Article
Direct Hydroxylation of Benzene with Hydrogen Peroxide Using Fe Complexes Encapsulated into Mesoporous Y-Type Zeolite
Molecules 2022, 27(20), 6852; https://doi.org/10.3390/molecules27206852 - 13 Oct 2022
Viewed by 496
Abstract
Mesoporous Y-type zeolite (MYZ) was prepared by an acid and base treatment of commercial Y-type zeolite (YZ). The mesopore volume of MYZ was six times higher than that of YZ. [Fe(terpy)2]2+ complexes encapsulated into MYZ and YZ with different Fe [...] Read more.
Mesoporous Y-type zeolite (MYZ) was prepared by an acid and base treatment of commercial Y-type zeolite (YZ). The mesopore volume of MYZ was six times higher than that of YZ. [Fe(terpy)2]2+ complexes encapsulated into MYZ and YZ with different Fe contents (Fe(X)L-MYZ and Fe(X)L-YZ; X is the amount of Fe) were prepared and characterized. The oxidation of benzene with H2O2 using Fe(X)L-MYZ and Fe(X)L-YZ catalysts was carried out; phenol was selectively produced with all Fe-containing zeolite catalysts. As a result, the oxidation activity of benzene increased with increasing iron complex content in the Fe(X)L-MYZ and Fe(X)L-YZ catalysts. The oxidation activity of benzene using Fe(X)L-MYZ catalyst was higher than that using Fe(X)L-YZ. Furthermore, adding mesopores increased the catalytic activity of the iron complex as the iron complex content increased. Full article
Show Figures

Figure 1

Article
The Conversion of Superoxide to Hydroperoxide on Cobalt(III) Depends on the Structural and Electronic Properties of Azole-Based Chelating Ligands
Molecules 2022, 27(19), 6416; https://doi.org/10.3390/molecules27196416 - 28 Sep 2022
Viewed by 573
Abstract
Conversion from superoxide (O2) to hydroperoxide (OOH) on the metal center of oxygenases and oxidases is recognized to be a key step to generating an active species for substrate oxidation. In this study, reactivity of cobalt(III)-superoxido complexes supported [...] Read more.
Conversion from superoxide (O2) to hydroperoxide (OOH) on the metal center of oxygenases and oxidases is recognized to be a key step to generating an active species for substrate oxidation. In this study, reactivity of cobalt(III)-superoxido complexes supported by facially-capping tridentate tris(3,5-dimethyl-4-X-pyrazolyl)hydroborate ([HB(pzMe2,X)3]; TpMe2,X) and bidentate bis(1-methyl-imidazolyl)methylborate ([B(ImN-Me)2Me(Y)]; LY) ligands toward H-atom donating reagent (2-hydroxy-2-azaadamantane; AZADOL) has been explored. The oxygenation of the cobalt(II) precursors give the corresponding cobalt(III)-superoxido complexes, and the following reaction with AZADOL yield the hydroperoxido species as has been characterized by spectroscopy (UV-vis, resonance Raman, EPR). The reaction of the cobalt(III)-superoxido species and a reducing reagent ([CoII(C5H5)2]; cobaltocene) with proton (trifluoroacetic acid; TFA) also yields the corresponding cobalt(III)-hydroperoxido species. Kinetic analyses of the formation rates of the cobalt(III)-hydroperoxido complexes reveal that second-order rate constants depend on the structural and electronic properties of the cobalt-supporting chelating ligands. An electron-withdrawing ligand opposite to the superoxide accelerates the hydrogen atom transfer (HAT) reaction from AZADOL due to an increase in the electrophilicity of the superoxide ligand. Shielding the cobalt center by the alkyl group on the boron center of bis(imidazolyl)borate ligands hinders the approaching of AZADOL to the superoxide, although the steric effect is insignificant. Full article
Show Figures

Figure 1

Article
The Steric Effect in Preparations of Vanadium(II)/(III) Dinitrogen Complexes of Triamidoamine Ligands Bearing Bulky Substituents
Molecules 2022, 27(18), 5864; https://doi.org/10.3390/molecules27185864 - 09 Sep 2022
Viewed by 666
Abstract
The reactions of newly designed lithiated triamidoamines Li3LR (R = iPr, Pen, and Cy2) with VCl3(THF)3 under N2 yielded dinitrogen–divanadium complexes with a μ-N2 between vanadium atoms [{V(LR)}2 [...] Read more.
The reactions of newly designed lithiated triamidoamines Li3LR (R = iPr, Pen, and Cy2) with VCl3(THF)3 under N2 yielded dinitrogen–divanadium complexes with a μ-N2 between vanadium atoms [{V(LR)}2(μ-N2)] (R = iPr (1) and Pen (2)) for the former two, while not dinitrogen–divanadium complexes but a mononuclear vanadium complex with a vacant site, [V(LCy2)] (R = Cy2 (3)), were obtained for the third ligand. The V–NN2 and N–N distances were 1.7655(18) and 1.219(4) Å for 1 and 1.7935(14) and 1.226(3) Å for 2, respectively. The ν(14N–14N) stretching vibrations of 1 and 2, as measured using resonance Raman spectroscopy, were detected at 1436 and 1412 cm–1, respectively. Complex 3 reacted with potassium metal in the presence of 18-crown-6-ether under N2 to give a hetero-dinuclear vanadium complex with μ-N2 between vanadium and potassium, [VK(LCy2)(μ-N2)(18-crown-6)] (4). The N–N distance and ν(14N–14N) stretching for 4 were 1.152(3) Å and 1818 cm−1, respectively, suggesting that 4 is more activated than complexes 1 and 2. The complexes 1, 2, 3, and 4 reacted with HOTf and K[C10H8] to give NH3 and N2H4. The yields of NH3 and N2H4 (per V atom) were 47 and 11% for 1, 38 and 16% for 2, 77 and 7% for 3, and 80 and 5% for 4, respectively, and 3 and 4, which have a ligand LCy2, showed higher reactivity than 1 and 2. Full article
Show Figures

Figure 1

Article
Lewis Acid-Induced Dinitrogen Cleavage in an Anionic Side-on End-on Bound Dinitrogen Diniobium Hydride Complex
Molecules 2022, 27(17), 5553; https://doi.org/10.3390/molecules27175553 - 29 Aug 2022
Viewed by 638
Abstract
The side-on end-on dinitrogen hydride complex [{Na(dme)}2{(O3)Nb}2(μ-η12-N2)(μ-H)2] (3-Na, [O3]3− = [(3,5-tBu2-2-O-C6H2)3CH]3−) was [...] Read more.
The side-on end-on dinitrogen hydride complex [{Na(dme)}2{(O3)Nb}2(μ-η12-N2)(μ-H)2] (3-Na, [O3]3− = [(3,5-tBu2-2-O-C6H2)3CH]3−) was observed to undergo facile elimination of H2 and cleavage of the N–N bond in the presence of 9-borabicyclo[3.3.1]nonane (9-BBN), AlMe3, and ZnMe2. Treatment of 3-Na with 9-BBN and ZnMe2 afforded the nitride complex [{K(dme)2}2{(O3)Nb}2(μ-N)2] (2-Na). The reaction of 3-Na with AlMe3 afforded [{Na(dme)}2{(O3)AlMe}2(NbMe2)2(μ-N)2] (5). The nitride complex 2-Na was treated with 9-BBN and AlMe3 to form [{Na(dme)}2{(O3)Nb}(μ-NH)(μ-NBC8H14){Nb(O3C)}] (4) and 5, respectively. Complex 2-Na, 4, and 5 were structurally characterized. Full article
Show Figures

Graphical abstract

Article
Synthesis and Reactivity of Manganese Complexes Bearing Anionic PNP- and PCP-Type Pincer Ligands toward Nitrogen Fixation
Molecules 2022, 27(7), 2373; https://doi.org/10.3390/molecules27072373 - 06 Apr 2022
Cited by 2 | Viewed by 1540
Abstract
A series of manganese complexes bearing an anionic pyrrole-based PNP-type pincer ligand and an anionic benzene-based PCP-type pincer ligand is synthesized and characterized. The reactivity of these complexes toward ammonia formation and silylamine formation from dinitrogen under mild conditions is evaluated to produce [...] Read more.
A series of manganese complexes bearing an anionic pyrrole-based PNP-type pincer ligand and an anionic benzene-based PCP-type pincer ligand is synthesized and characterized. The reactivity of these complexes toward ammonia formation and silylamine formation from dinitrogen under mild conditions is evaluated to produce only stoichiometric amounts of ammonia and silylamine, probably because the manganese pincer complexes are unstable under reducing conditions. Full article
Show Figures

Figure 1

Review

Jump to: Research

Review
π–π Stacking Interaction of Metal Phenoxyl Radical Complexes
Molecules 2022, 27(3), 1135; https://doi.org/10.3390/molecules27031135 - 08 Feb 2022
Viewed by 1197
Abstract
π–π stacking interaction is well-known to be one of the weak interactions. Its importance in the stabilization of protein structures and functionalization has been reported for various systems. We have focused on a single copper oxidase, galactose oxidase, which has the π–π stacking [...] Read more.
π–π stacking interaction is well-known to be one of the weak interactions. Its importance in the stabilization of protein structures and functionalization has been reported for various systems. We have focused on a single copper oxidase, galactose oxidase, which has the π–π stacking interaction of the alkylthio-substituted phenoxyl radical with the indole ring of the proximal tryptophan residue and catalyzes primary alcohol oxidation to give the corresponding aldehyde. This stacking interaction has been considered to stabilize the alkylthio-phenoxyl radical, but further details of the interaction are still unclear. In this review, we discuss the effect of the π–π stacking interaction of the alkylthio-substituted phenoxyl radical with an indole ring. Full article
Show Figures

Figure 1

Back to TopTop