Catalytic Ammonia Synthesis Mediated by Molybdenum Complexes with PN3P Pincer Ligands: Influence of P/N Substituents and Molecular Mechanism
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Hermann, A. Haber und Bosch: Brot aus Luft—Die Ammoniaksynthese. Phys. Bl. 1965, 21, 168–171. [Google Scholar] [CrossRef]
- Haber, F.; van Oordt, G. Über die Bildung von Ammoniak den Elementen. Z. Anorg. Chem. 1905, 44, 341–378. [Google Scholar] [CrossRef] [Green Version]
- Baerns, M.; Behr, A.; Brehm, A.; Gmehling, J.; Hinrichsen, K.-O.; Hofmann, H.; Palkovits, R.; Onken, U.; Renken, A. Technische Chemie, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2013. [Google Scholar]
- Burgess, B.K.; Lowe, D.J. Mechanism of Molybdenum Nitrogenase. Chem. Rev. 1996, 96, 2983–3012. [Google Scholar] [CrossRef] [PubMed]
- Spatzal, T.; Aksoyoglu, M.; Zhang, L.; Andrade, S.L.A.; Schleicher, E.; Weber, S.; Rees, D.C.; Einsle, O. Evidence for Interstitial Carbon in Nitrogenase FeMo Cofactor. Science 2011, 334, 940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lancaster, K.M.; Roemelt, M.; Ettenhuber, P.; Hu, Y.; Ribbe, M.W.; Neese, F.; Bergmann, U.; DeBeer, S. X-ray Emission Spectroscopy Evidences a Central Carbon in the Nitrogenase Iron-Molybdenum Cofactor. Science 2011, 334, 974–977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribbe, M.W.; Hu, Y.; Hodgson, K.O.; Hedman, B. Biosynthesis of nitrogenase metalloclusters. Chem. Rev. 2014, 114, 4063–4080. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, B.M.; Lukoyanov, D.; Yang, Z.-Y.; Dean, D.R.; Seefeldt, L.C. Mechanism of nitrogen fixation by nitrogenase: The next stage. Chem. Rev. 2014, 114, 4041–4062. [Google Scholar] [CrossRef]
- Milton, R.D.; Abdellaoui, S.; Khadka, N.; Dean, D.R.; Leech, D.; Seefeldt, L.C.; Minteer, S.D. Nitrogenase bioelectrocatalysis: Heterogeneous ammonia and hydrogen production by MoFe protein. Energy Environ. Sci. 2016, 9, 2550–2554. [Google Scholar] [CrossRef] [Green Version]
- Sickerman, N.S.; Tanifuji, K.; Hu, Y.; Ribbe, M.W. Synthetic Analogues of Nitrogenase Metallocofactors: Challenges and Developments. Chem. Eur. J. 2017, 23, 12425–12432. [Google Scholar] [CrossRef]
- Mus, F.; Alleman, A.B.; Pence, N.; Seefeldt, L.C.; Peters, J.W. Exploring the alternatives of biological nitrogen fixation. Metallomics 2018, 10, 523–538. [Google Scholar] [CrossRef]
- Allen, A.D.; Senoff, C.V. Nitrogenopentammineruthenium(II) complexes. Chem. Commun. 1965, 24, 621–622. [Google Scholar] [CrossRef]
- Chatt, J.; Richards, R.L. The reactions of dinitrogen in its metal complexes. J. Organomet. Chem. 1982, 239, 65–77. [Google Scholar] [CrossRef]
- Pickett, C. The Chatt cycle and the mechanism of enzymic reduction of molecular nitrogen. JBIC J. Biol. Inorg. Chem. 1996, 1, 601–606. [Google Scholar] [CrossRef]
- Engesser, T.A.; Kindjajev, A.; Junge, J.; Krahmer, J.; Tuczek, F. A Chatt-Type Catalyst with One Coordination Site for Dinitrogen Reduction to Ammonia. Chem. Eur. J. 2020, 26, 14807–14812. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.S.; Rittle, J.; Peters, J.C. Catalytic conversion of nitrogen to ammonia by an iron model complex. Nature 2013, 501, 84–87. [Google Scholar] [CrossRef] [Green Version]
- Buscagan, T.M.; Oyala, P.H.; Peters, J.C. N2 -to-NH3 Conversion by a triphos-Iron Catalyst and Enhanced Turnover under Photolysis. Angew. Chem. Int. Ed. 2017, 56, 6921–6926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arashiba, K.; Miyake, Y.; Nishibayashi, Y. A molybdenum complex bearing PNP-type pincer ligands leads to the catalytic reduction of dinitrogen into ammonia. Nat. Chem. 2011, 3, 120–125. [Google Scholar] [CrossRef]
- Eizawa, A.; Arashiba, K.; Tanaka, H.; Kuriyama, S.; Matsuo, Y.; Nakajima, K.; Yoshizawa, K.; Nishibayashi, Y. Remarkable catalytic activity of dinitrogen-bridged dimolybdenum complexes bearing NHC-based PCP-pincer ligands toward nitrogen fixation. Nat. Commun. 2017, 8, 14874. [Google Scholar] [CrossRef] [Green Version]
- Stucke, N.; Krahmer, J.; Näther, C.; Tuczek, F. Molybdenum Complexes Supported by PN 3 P Pincer Ligands: Synthesis, Characterization, and Application to Synthetic Nitrogen Fixation. Eur. J. Inorg. Chem. 2018, 2018, 5108–5116. [Google Scholar] [CrossRef]
- Simonneau, A.; Turrel, R.; Vendier, L.; Etienne, M. Group 6 Transition-Metal/Boron Frustrated Lewis Pair Templates Activate N2 and Allow its Facile Borylation and Silylation. Angew. Chem. 2017, 129, 12436–12440. [Google Scholar] [CrossRef]
- Simonneau, A.; Etienne, M. Enhanced Activation of Coordinated Dinitrogen with p-Block Lewis Acids. Chem. Eur. J. 2018, 24, 12458–12463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashida, Y.; Arashiba, K.; Nakajima, K.; Nishibayashi, Y. Molybdenum-catalysed ammonia production with samarium diiodide and alcohols or water. Nature 2019, 568, 536–540. [Google Scholar] [CrossRef] [PubMed]
- Ashida, Y.; Arashiba, K.; Tanaka, H.; Egi, A.; Nakajima, K.; Yoshizawa, K.; Nishibayashi, Y. Molybdenum-Catalyzed Ammonia Formation Using Simple Monodentate and Bidentate Phosphines as Auxiliary Ligands. Inorg. Chem. 2019, 58, 8927–8932. [Google Scholar] [CrossRef]
- Lagaditis, P.O.; Schluschaß, B.; Demeshko, S.; Würtele, C.; Schneider, S. Square-Planar Cobalt(III) Pincer Complex. Inorg. Chem. 2016, 55, 4529–4536. [Google Scholar] [CrossRef] [PubMed]
- van Alten, R.S.; Wieser, P.A.; Finger, M.; Abbenseth, J.; Demeshko, S.; Würtele, C.; Siewert, I.; Schneider, S. Halide Effects in Reductive Splitting of Dinitrogen with Rhenium Pincer Complexes. Inorg. Chem. 2022, 61, 11581–11591. [Google Scholar] [CrossRef]
- Schirmer, W.; Flörke, U.; Haupt, H.-J. Darstellung, Eigenschaften und Moleklstrukturen von Komplexen des versteiften dreizhnigen Chelatliganden N, N?-Bis(diphenylphosphino)-2,6-diaminopyridin mit MII—und M0-bergangsmetallen [MII = Ni, Pd, Pt; M0 = Cr, Mo, W]. Z. Anorg. Allg. Chem. 1987, 545, 83–97. [Google Scholar] [CrossRef]
- Benito-Garagorri, D.; Becker, E.; Wiedermann, J.; Lackner, W.; Pollak, M.; Mereiter, K.; Kisala, J.; Kirchner, K. Achiral and Chiral Transition Metal Complexes with Modularly Designed Tridentate PNP Pincer-Type Ligands Based on N-Heterocyclic Diamines. Organometallics 2006, 25, 1900–1913. [Google Scholar] [CrossRef]
- Benito-Garagorri, D.; Kirchner, K. Modularly designed transition metal PNP and PCP pincer complexes based on aminophosphines: Synthesis and catalytic applications. Acc. Chem. Res. 2008, 41, 201–213. [Google Scholar] [CrossRef]
- Schöffel, J.; Šušnjar, N.; Nückel, S.; Sieh, D.; Burger, P. 4d vs. 5d—Reactivity and Fate of Terminal Nitrido Complexes of Rhodium and Iridium. Eur. J. Inorg. Chem. 2010, 2010, 4911–4915. [Google Scholar] [CrossRef]
- Angersbach-Bludau, F.; Schulz, C.; Schöffel, J.; Burger, P. Syntheses and electronic structures of μ-nitrido bridged pyridine, diimine iridium complexes. Chem. Commun. 2014, 50, 8735–8738. [Google Scholar] [CrossRef]
- de Aguiar, S.R.M.; Stöger, B.; Pittenauer, E.; Puchberger, M.; Allmaier, G.; Veiros, L.F.; Kirchner, K. A complete series of halocarbonyl molybdenum PNP pincer complexes – Unexpected differences between NH and NMe spacers. J. Organomet. Chem. 2013, 760, 74–83. [Google Scholar] [CrossRef] [Green Version]
- Mastalir, M.; de Aguiar, S.R.M.M.; Glatz, M.; Stöger, B.; Kirchner, K. A Convenient Solvothermal Synthesis of Group 6 PNP Pincer Tricarbonyl Complexes. Organometallics 2016, 35, 229–232. [Google Scholar] [CrossRef]
- Kinoshita, E.; Arashiba, K.; Kuriyama, S.; Eizawa, A.; Nakajima, K.; Nishibayashi, Y. Synthesis and Catalytic Activity of Molybdenum–Nitride Complexes Bearing Pincer Ligands. Eur. J. Inorg. Chem. 2015, 2015, 1789–1794. [Google Scholar] [CrossRef]
- Tanabe, Y.; Nishibayashi, Y. Comprehensive insights into synthetic nitrogen fixation assisted by molecular catalysts under ambient or mild conditions. Chem. Soc. Rev. 2021, 50, 5201–5242. [Google Scholar] [CrossRef]
- Chaney, A.L.; Marbach, E.P. Modified Reagents for Determination of Urea and Ammonia. Clin. Chem. 1962, 8, 130–132. [Google Scholar] [CrossRef]
- Schneider, R.; Engesser, T.A.; Näther, C.; Krossing, I.; Tuczek, F. Copper-Catalyzed Monooxygenation of Phenols: Evidence for a Mononuclear Reaction Mechanism. Angew. Chem. Int. Ed. 2022, 61, e202202562. [Google Scholar] [CrossRef]
- Tanaka, H.; Arashiba, K.; Kuriyama, S.; Sasada, A.; Nakajima, K.; Yoshizawa, K.; Nishibayashi, Y. Unique behaviour of dinitrogen-bridged dimolybdenum complexes bearing pincer ligand towards catalytic formation of ammonia. Nat. Commun. 2014, 5, 3737. [Google Scholar] [CrossRef] [Green Version]
- Bruch, Q.J.; Malakar, S.; Goldman, A.S.; Miller, A.J.M. Mechanisms of Electrochemical N2 Splitting by a Molybdenum Pincer Complex. Inorg. Chem. 2022, 61, 2307–2318. [Google Scholar] [CrossRef]
- Tian, Y.-H.; Pierpont, A.W.; Batista, E.R. How Does Nishibayashi’s Molybdenum Complex Catalyze Dinitrogen Reduction to Ammonia? Inorg. Chem. 2014, 53, 4177–4183. [Google Scholar] [CrossRef]
- Tuczek, F.; Horn, K.H.; Lehnert, N. Vibrational spectroscopic properties of molybdenum and tungsten N2 and N2Hx complexes with depe coligands: Comparison to dppe systems and influence of H-bridges. Coord. Chem. Rev. 2003, 245, 107–120. [Google Scholar] [CrossRef]
- Arashiba, K.; Eizawa, A.; Tanaka, H.; Nakajima, K.; Yoshizawa, K.; Nishibayashi, Y. Catalytic Nitrogen Fixation via Direct Cleavage of Nitrogen–Nitrogen Triple Bond of Molecular Dinitrogen under Ambient Reaction Conditions. Bull. Chem. Soc. Jpn. 2017, 90, 1111–1118. [Google Scholar] [CrossRef]
- Stoffelbach, F.; Saurenz, D.; Poli, R. Improved Preparations of Molybdenum Coordination Compounds from Tetrachlorobis(diethyl ether)molybdenum(IV). Eur. J. Inorg. Chem. 2001, 2001, 2699–2703. [Google Scholar] [CrossRef]
- Owens, B.E.; Poli, R.; Rheingold, A.L. Conformational preferences in six-coordinate, octahedral complexes of molybdenum(III). Synthesis and structure of MoX3(dppe)L [X = Cl, Br, I; dppe = bis(diphenylphosphino)ethane; L = tetrahydrofuran, acetonitrile, trimethylphosphine]. Inorg. Chem. 1989, 28, 1456–1462. [Google Scholar] [CrossRef]
- Cotton, F.A.; Poli, R. Low-valent molybdenum carbonyl complexes as an entry to octahedral MoI3L3 complexes. Synthesis and X-ray molecular structure of triiodotris(tetrahydrofuran)molybdenum. Inorg. Chem. 1987, 26, 1514–1518. [Google Scholar] [CrossRef]
- Stoll, S.; Schweiger, A. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J. Magn. Reson. 2006, 178, 42–55. [Google Scholar] [CrossRef]
Run | Catalyst | NH3/equiv. | NH3/% |
---|---|---|---|
1 | 1a | 38.5 (±0.3) | 64.2 |
2 | 1b | 39.7 (±0.1) | 66.2 |
3 | 1c | 32.4 (±0.1) | 54.0 |
4 | 2a | 1.4 (±0.1) | 2.3 |
5 | 2b | 1.5 (±0.2) | 2.5 |
6 | 2c | 2.3 (±0.1) | 3.8 |
7 | 3a | 1.8 (±0.1) | 3.0 |
8 | 3b | 1.9 (±0.1) | 3.3 |
9 | 3c | 1.7 (±0.1) | 2.8 |
10 | 4 | 17.0 (±1.0) | 28.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bedbur, K.; Stucke, N.; Liehrs, L.; Krahmer, J.; Tuczek, F. Catalytic Ammonia Synthesis Mediated by Molybdenum Complexes with PN3P Pincer Ligands: Influence of P/N Substituents and Molecular Mechanism. Molecules 2022, 27, 7843. https://doi.org/10.3390/molecules27227843
Bedbur K, Stucke N, Liehrs L, Krahmer J, Tuczek F. Catalytic Ammonia Synthesis Mediated by Molybdenum Complexes with PN3P Pincer Ligands: Influence of P/N Substituents and Molecular Mechanism. Molecules. 2022; 27(22):7843. https://doi.org/10.3390/molecules27227843
Chicago/Turabian StyleBedbur, Katja, Nadja Stucke, Lina Liehrs, Jan Krahmer, and Felix Tuczek. 2022. "Catalytic Ammonia Synthesis Mediated by Molybdenum Complexes with PN3P Pincer Ligands: Influence of P/N Substituents and Molecular Mechanism" Molecules 27, no. 22: 7843. https://doi.org/10.3390/molecules27227843
APA StyleBedbur, K., Stucke, N., Liehrs, L., Krahmer, J., & Tuczek, F. (2022). Catalytic Ammonia Synthesis Mediated by Molybdenum Complexes with PN3P Pincer Ligands: Influence of P/N Substituents and Molecular Mechanism. Molecules, 27(22), 7843. https://doi.org/10.3390/molecules27227843