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Abstract: π–π stacking interaction is well-known to be one of the weak interactions. Its importance in
the stabilization of protein structures and functionalization has been reported for various systems. We
have focused on a single copper oxidase, galactose oxidase, which has the π–π stacking interaction of
the alkylthio-substituted phenoxyl radical with the indole ring of the proximal tryptophan residue
and catalyzes primary alcohol oxidation to give the corresponding aldehyde. This stacking interaction
has been considered to stabilize the alkylthio-phenoxyl radical, but further details of the interaction
are still unclear. In this review, we discuss the effect of the π–π stacking interaction of the alkylthio-
substituted phenoxyl radical with an indole ring.
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1. Introduction

Weak interactions in biological system are important in terms of the structural and
functional aspects [1–28]. Of particular significance are hydrogen bonds [19,20], π–π
stacking interactions [12–14] and other non-covalent interactions, including cation-π, NH-π
and CH-π interactions [21–28]. These interactions greatly contribute to the construction
and stabilization of the highly ordered structures of proteins and other biological molecules,
molecular recognition of the substrate and catalytic activity of enzymes [1–28]. From the
importance of weak interactions, the functionalization of the metal complexes has been
investigated. In particular, the hydrogen bond was found to stabilize the active dioxygen
species [29–31]. Thus, the metal complexes with some groups capable of hydrogen bond
formation exhibited novel properties and reactivities. On the other hand, the other weak
interactions, such as π–π stacking interaction, have remained yet to be employed for the
functionalization of the artificial metal complexes.

In order to find the way to the functionalization of metal complexes by π–π stacking in-
teraction, we focused on model studies of the single copper enzyme, galactose oxidase (GO),
which catalyzes primary alcohol oxidation to give the corresponding aldehyde [32–37]. The
catalytic alcohol oxidation mechanism involves the hydrogen atom abstraction from the
π-position of primary alcohol to the phenoxyl radical bound to the copper(II) ion in the
active form of GO [35]. The active site structure of GO has been revealed to have a square
pyramidal structure with two imidazole moieties of the histidine residues and two phenol
moieties of the tyrosine residues coordinated to the copper(II) ion (Figure 1) [36]. One of
the two phenol moieties is deprotonated and bound at an equatorial position of the copper
center as a phenolate ligand, to which the sulfur atom derived from the cysteine residue is
bound at the ortho-position to form an ortho-alkylthiophenolate moiety. The active form
of GO is known to be the copper(II)-alkylthiophenoxyl radical, and this phenoxyl radical
has been proposed to be stabilized by π–π stacking interaction with the indole ring of the
proximal tryptophan residue (Trp 290) [37].
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Figure 1. The active site structure of galactose oxidase.

A number of model studies of GO have been reported with emphasis on the character-
istic electronic structure of copper(II)-phenoxyl radical and its reactivity [37–47]. Copper(II)-
phenoxyl radical complexes have quite different geometric and electronic structures com-
pared with the copper(III)-phenolate species, which is the same one-electron oxidized form
of the copper(II)-phenolate species [48–53]. The difference is reflected to the reactivity on
the primary alcohol oxidation; the copper(III)-phenolate is less reactive for the primary
alcohol oxidation in comparison with the copper(II)-phenoxyl radical, suggesting that
the hydrogen abstraction by the phenoxyl radical is significant in the course of the oxida-
tion [52–54]. However, the effect of the π–π stacking interaction of the phenoxyl radical
with the indole ring is still unclear.

With these points in mind, we focus on the effects of the π–π stacking interaction
of the phenoxyl radical bound to a copper ion. The geometric and electronic structural
changes of the phenoxyl radical by the π–π stacking interaction and its effects on reactivity
are discussed on the basis of recent results. This review discusses π–π stacking interactions
of the phenoxyl radical species with the indole ring around the metal center.

2. The π–π Stacking Interaction in the Active Site of GO

One of the aromatic amino acids tryptophan (Trp) has a side chain indole ring, which
is a fused-ring aromatic molecule composed of a pyrrole and a benzene ring. The indole
ring has been considered to stabilize the active species or to be involved in electron transfer
pathways by π–π stacking interaction with the other aromatic ring. Therefore, it is fre-
quently located at the proximal position of the active or important site of enzymes [41,55].
GO catalyzes oxidation of the primary alcohol at the 6-position of galactose to generate the
corresponding aldehyde [35,56], and the active species of the catalytic oxidation has been
well known to be the copper(II)-phenoxyl radical derived from the one-electron oxidation
of the phenolate moiety of tyrosine 272 (Tyr 272) bound to the copper(II) ion [32–37]. The
phenoxyl radical moiety of Tyr 272 is modified by the carbon-sulfur covalent bond at the
ortho-position, derived from the cross linking with the cysteine 228 (Cys 228), and the
active form of GO is described as a copper(II)-alkylthiophenoxyl radical species [51]. The
indole ring of Trp 290 is located in the second coordination sphere of the active site of GO,
most probably for stabilization of the copper(II)-alkylthiophenoxyl radical species by the
π–π stacking interaction with the alkylthiophenoxyl radical of Tyr 272 [57–61]. Previous
studies using the GO mutants with Trp 290 replaced with various other amino acids, such
as glycine (gly), phenylalanine (Phe) and histidine (His), revealed a shorter lifetime of
the Cu(II)-alkylthiophenoxyl radical, indicating that the π–π stacking interaction plays an
important role in the stabilization of the radical in the active form of GO [58–60].
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Apo-GO, which has no Cu(II) ion in the active site, shows a significantly different
structure, especially in the active site, where the phenoxyl radical could not be detected
and no C-S bond formation in the phenol moiety of Tyr 272 was found (Scheme 1) [60,61].
In addition, the π–π stacking interaction of the indole moiety of Trp 290 with the phenol
moiety of Tyr 272 was not observed, and the indole ring was exposed to the outer sphere of
protein [60]. However, both the stacking interaction and the C-S cross link were generated
upon the addition of copper(II) ion to the apo-GO by the soaking experiments [60]. These
results suggests that the indole ring of Trp 290 selectively interacts with the alkylthio-
phenoxyl radical moiety.
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Scheme 1. Reaction of the apo-GO with copper(II) ion to form the mature-GO.

On the other hand, the effect of the C-S cross link of the alkylthiophenoxyl radical have
been also reported [62]. The mutation study replacing Cys with glycine (Gly) and serine
(Ser) of the GO homologue, GlxA, revealed that the unpaired electron of the phenoxyl
radical was transferred to the indole moiety of Trp to form the indolyl or indole–π–cation
radical [62]. The result suggests that the alkylthiophenoxyl radical is also stabilized by the
C-S cross link. It was proposed that in the absence of the C-S cross link, the indole ring
of Trp may be also located in the proximal position of the phenoxyl radical, but that the
conformation of the indole moiety is different from that of the native GO. The indole ring
was found to be in a position not suitable for the π–π stacking interaction, and thus it was
rotated to form the pseudo-physical (van der Waals) interaction mainly of the indole C–H
bonds with the phenolate moiety (Scheme 2). The experimental and calculation studies
of the mutants proposed that the spin density in these mutants is distributed mainly on
the indole moiety coupled with the Tyr phenolate moiety [62]. Thus, the methylthio group
is important for the stabilization of the phenoxyl radical by the face-to-face π–π stacking
interaction, and, for easy transfer of the unpaired electron of the phenoxyl radical, may be
easily transferred to the indole ring by rotation.
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Scheme 2. (A) Stacking interaction of the indole ring in native mature GO homologue. (B) The
electron transfer from the phenoxyl radical to the indole moiety in the absence of the C-S cross link.

3. π–π Stacking Interaction of Methylthio-Phenoxyl Radical Metal Complexes

The π–π stacking interaction between two phenoxyl radicals is slightly different from
that involving the neutral phenol and phenolate anion, due to the existence of one unpaired
electron on the π conjugated system. The π orbital is assigned to the SOMO on the phenoxyl
radical as whole; therefore, a SOMO–SOMO interaction can be considered in general [63].
Such a SOMO–SOMO interaction could not be observed in the crystals of metal phenoxyl
radical complexes except alkylthio-phenoxyl radical species [39,40,64–66]. In many cases,
the phenoxyl radical moiety interacted only with the counter anion weakly [39,40,64]. On
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the other hand, the alkylthio-phenoxyl radical, which is similar to the phenoxyl radical in
the active form of GO, showed a significant interaction with the other phenoxyl radical
by π–π stacking interaction in the solid state [65]. Furthermore, the stacking interaction
between alkylthio-phenoxyl radicals exhibited a different dependence on the central metal
ion [65,66].

Recently, the X-ray crystal structures of oxidized copper(II)- and nickel(II)-diphenolate
complexes have been successfully determined. One-electron oxidized copper(II) di(methyl
thiophenolate) complex with a salen-type ligand, [Cu(MeS-salen)]SbCl6 ([1]SbCl6), was
prepared by reaction of Cu(MeS-salen) (1) with one equivalent of thiantrenyl radical hex-
achloroantimante salt (Th+SbCl6−) (Scheme 3) [65]. Similar oxidation by addition of one
equivalent of Th+SbCl6− to the solution of Ni(MeS-salen) (2) afforded the one-electron
oxidized complex, [Ni(MeS-salen)]SbCl6 ([2]SbCl6) [66]. The Cu and Ni K-edge X-ray
absorption near edge structures (XANES) of these one-electron oxidized complexes showed
no significant difference from that of the complexes before oxidation, whereas the sulfur
K-edge XANES exhibited a noticeable increase in the pre-edge intensity of [1]SbCl6 [65–68].
These results indicate that the one-electron oxidized complexes [1]SbCl6 and [2]SbCl6
are ligand centered oxidation species and thus can be assigned to the metal(II)-phenoxyl
radical complexes.

Molecules 2022, 27, x FOR PEER REVIEW 4 of 19 
 

 

general [63]. Such a SOMO–SOMO interaction could not be observed in the crystals of 

metal phenoxyl radical complexes except alkylthio-phenoxyl radical species [39,40,64–66]. 

In many cases, the phenoxyl radical moiety interacted only with the counter anion weakly 

[39,40,64]. On the other hand, the alkylthio-phenoxyl radical, which is similar to the phe-

noxyl radical in the active form of GO, showed a significant interaction with the other 

phenoxyl radical by π–π stacking interaction in the solid state [65]. Furthermore, the stack-

ing interaction between alkylthio-phenoxyl radicals exhibited a different dependence on 

the central metal ion [65,66]. 

Recently, the X-ray crystal structures of oxidized copper(II)- and nickel(II)-dipheno-

late complexes have been successfully determined. One-electron oxidized copper(II) 

di(methylthiophenolate) complex with a salen-type ligand, [Cu(MeS-salen)]SbCl6 

([1]SbCl6), was prepared by reaction of Cu(MeS-salen) (1) with one equivalent of thi-

antrenyl radical hexachloroantimante salt (Th+SbCl6−) (Scheme 3) [65]. Similar oxidation 

by addition of one equivalent of Th+SbCl6− to the solution of Ni(MeS-salen) (2) afforded 

the one-electron oxidized complex, [Ni(MeS-salen)]SbCl6 ([2]SbCl6) [66]. The Cu and Ni 

K-edge X-ray absorption near edge structures (XANES) of these one-electron oxidized 

complexes showed no significant difference from that of the complexes before oxidation, 

whereas the sulfur K-edge XANES exhibited a noticeable increase in the pre-edge inten-

sity of [1]SbCl6 [65–68]. These results indicate that the one-electron oxidized complexes 

[1]SbCl6 and [2]SbCl6 are ligand centered oxidation species and thus can be assigned to 

the metal(II)-phenoxyl radical complexes. 

 

Scheme 3. (A) Structure of alkylthio-phenolate complexes 1 and 2; (B) Formation of one-electron 

oxidized alkylthio-phenolate complexes, [1]+ and [2]+. 

The X-ray crystal structure of [1]SbCl6 revealed that it has half of the molecule as a 

crystallographically independent unit, indicating that [1]SbCl6 has a perfect C2 axis 

through the center of the ethylenediamine and the copper ion (Figure 2A) [65]. The results 

indicate that the structural features of the two phenolate moieties are identical. The bond 

length of Cu–O in [1]SbCl6 (1.920 (1) Å ) was longer than that of 1 (1.902(1) Å ), and that of 

C–O of the phenolate moiety in [1]SbCl6 (1.295(2) Å ) was shortened compared with 1 

(1.307(2) Å ). On the other hand, the X-ray crystal structure of [2]SbCl6 showed no sym-

metry axis, indicating that the two phenolate moieties in [2]SbCl6 are structurally not 

identical (Figure 2B) [66]. The differences of the two Ni–O and two C–O bond lengths in 

[2]SbCl6 (Ni–O(1) 1.875(2) Å , Ni–O(2) 1.843(2) Å ; C(1)–O(1) 1.279(4) Å , C(2)–O(2) 1.315(4) 

Å ) were larger than the differences observed between 1 and [1]SbCl6. The bond lengths 

of Ni–O(2) and C(2)–O(2) in [2]SbCl6 were similar to those of complex 2 (Ni–O 1.8586(9) 

Å , C–O 1.312(1) Å ), supporting that one of the phenolate moieties in [2]SbCl6 maintains 

the phenolate electronic structure, so that [2]SbCl6 can be described as the nickel(II) local-

ized phenoxyl radical complex, [NiII(phenolate)(phenoxyl radical)]+ [66]. In the case of 

copper complex [1]SbCl6, the difference of the Cu–O and C–O bond lengths was rather 

small in comparison with the nickel complexes. From the results together with the sym-

metric features in crystals, [1]SbCl6 can be assigned to the copper(II)-delocalized radical 

O

N N

O

M

SCH3H3CS

t-Bu t-Bu

O

N N

O
M

SCH3H3CS

t-Bu t-Bu

O

N N

O
M

SCH3H3CS

t-Bu t-Bu

+

M : Cu (1), Ni(2)

M : Cu ([1]+), Ni([2]+)

+ one-electron 
oxidant

(A)

(B)

Scheme 3. (A) Structure of alkylthio-phenolate complexes 1 and 2; (B) Formation of one-electron
oxidized alkylthio-phenolate complexes, [1]+ and [2]+.

The X-ray crystal structure of [1]SbCl6 revealed that it has half of the molecule as
a crystallographically independent unit, indicating that [1]SbCl6 has a perfect C2 axis
through the center of the ethylenediamine and the copper ion (Figure 2A) [65]. The results
indicate that the structural features of the two phenolate moieties are identical. The bond
length of Cu–O in [1]SbCl6 (1.920 (1) Å) was longer than that of 1 (1.902(1) Å), and that
of C–O of the phenolate moiety in [1]SbCl6 (1.295(2) Å) was shortened compared with 1
(1.307(2) Å). On the other hand, the X-ray crystal structure of [2]SbCl6 showed no symmetry
axis, indicating that the two phenolate moieties in [2]SbCl6 are structurally not identical
(Figure 2B) [66]. The differences of the two Ni–O and two C–O bond lengths in [2]SbCl6
(Ni–O(1) 1.875(2) Å, Ni–O(2) 1.843(2) Å; C(1)–O(1) 1.279(4) Å, C(2)–O(2) 1.315(4) Å) were
larger than the differences observed between 1 and [1]SbCl6. The bond lengths of Ni–
O(2) and C(2)–O(2) in [2]SbCl6 were similar to those of complex 2 (Ni–O 1.8586(9) Å,
C–O 1.312(1) Å), supporting that one of the phenolate moieties in [2]SbCl6 maintains the
phenolate electronic structure, so that [2]SbCl6 can be described as the nickel(II) localized
phenoxyl radical complex, [NiII(phenolate)(phenoxyl radical)]+ [66]. In the case of copper
complex [1]SbCl6, the difference of the Cu–O and C–O bond lengths was rather small
in comparison with the nickel complexes. From the results together with the symmetric
features in crystals, [1]SbCl6 can be assigned to the copper(II)-delocalized radical species
described as [CuII(0.5-phenoxyl radical)2]+ with the electron equally distributed on the two
phenolate moieties [65].
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Figure 2. Crystal structures of one-electron oxidized complexes; (A) [1]SbCl6 and (B) [2]SbCl6.

The crystal packing of these one-electron oxidized complexes revealed the existence of
the intermolecular interaction. The crystal packing of [1]SbCl6 showed the intermolecular
π–π stacking interaction between the two half-phenoxyl radical moieties of the neighboring
molecules with the distance of 3.18 Å, resulting in the one-dimensional chain formation.
Furthermore, the sulfur atom of the 0.5-alkylthiophenoxyl radical was in close contact with
the central copper ion with the distance of 3.04 Å (Figure 3A,B) [65]. On the other hand,
the crystal packing of the localized phenoxyl radical complex [2]SbCl6 showed a different
view of the crystal packing (Figure 3C,D). The intermolecular π–π stacking interaction was
observed between the localized phenoxyl radical moieties of the neighboring molecules
with the distance of 3.1 Å to give a dimerization species, but no one-dimensional chain
formation could be detected [66].
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Figure 3. Crystal packing of the phenoxyl radical complexes; (A) side view of [1]SbCl6, (B) top view
of [1]SbCl6, (C) side view of [2]SbCl6, (D) top view of [2]SbCl6.

Such a difference in the intermolecular π–π stacking interaction of copper and nickel
complexes was considered to arise from the difference in the population of the unpaired
electron spin on the phenoxyl radical moiety. In general, the SOMO–SOMO interaction
shows some characteristics [63]; π–π stacking geometry involving the SOMO–SOMO
interaction exhibits the atom-over-atom configurations with a distance shorter than the
sum of the van der Waals radii (less than 3.19 Å in the case of the C–C distance), as
opposed to the atom-over-bond or atom-over-ring configurations, which are typical of
van der Waals π–π stacking [14,63,69]. Furthermore, possible minor deviations from
the planarity of the constituent molecules indicate the primary role of the SOMO–SOMO
interaction [63]. In the case of [2]SbCl6, the intermolecular π–π stacking interaction between
two localized phenoxyl radical moieties can be assigned to the characteristic SOMO–SOMO
interaction, the atom-over-atom configurations being observed with the shortest C–C
distance of 3.1 Å and small deviation of the stacked phenoxyl radical moieties from planarity
(Figure 3C,D) [66]. On the other hand, [1]SbCl6 having two half-phenoxyl radical moieties
showed the intermolecular interaction typical of van der Waals π–π stacking, which is very
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similar to that before oxidation (Figure 4) [65]. These results suggest that the alkylthio-
phenoxyl radical moiety prefers the π–π stacking interaction and that the mode of the
stacking depends on the electronic structure of the phenoxyl radical moiety.
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The π–π stacking interaction can give rise to a different electronic structure of the
metal phenoxyl radical species. The phenoxyl radical localization and delocalization can
be assigned by the NIR band intensity and band width, which is similar to the mixed
valence dinuclear complexes [70–72]. In the case of the completely localized phenoxyl
radical unpaired electron on one of the two phenolate moieties, no characteristic band
is observed in the NIR region. However, an increase in the degree of the delocalization
gradually causes the appearance of the NIR band, and the full delocalization of the radical
unpaired electron on the two phenolate moieties described as (0.5-phenoxyl radical)2 gives
a sharp intense band with a narrow bandwidth in the NIR region [73–75]. The UV-vis-
NIR absorption spectrum of the CH2Cl2 solution of [1]SbCl6 showed a broad NIR band
with a small intensity at 9100 cm−1, which is a feature similar to the one-electron oxidized
methoxy-substituted diphenolate copper(II) complex, [Cu(MeO-salen)]+ (Figure 5A) [65,73].
The band was assigned to the phenolate to phenoxyl radical charge transfer, which was
also supported by TD-DFT calculation. On the other hand, the solid sample of [1]SbCl6
showed a large shift of the NIR band to 5000 cm−1, which is different from that of the solid
sample of [Cu(MeO-salen)]+ (7800cm−1 in CH2Cl2 vs. 7200 cm−1 in the solid state) [65,73].
Furthermore, the bandwidth of the NIR band of [1]SbCl6 in the solid state was narrow
in comparison with the solid sample of [Cu(MeO-salen)]+ and the CH2Cl2 solution of
[1]SbCl6 (Figure 5B) [65,73]. These results indicate that [1]SbCl6 has different electronic
structures, the localized phenoxyl radical in CH2Cl2 and the delocalized phenoxyl radical
on two phenolate moieties in the solid state due to the stacking interaction, which was
supported by DFT calculations [65].
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Figure 5. UV-vis-NIR and reflectance spectra of copper complexes. (A) UV-vis-NIR spectra in CH2Cl2,
(B) Reflectance spectra in the solid state. Blackline: [Cu(MeO-salen)]SbF6; red line: [1]SbCl6.

The difference arising from the stacking interaction was also observed in EPR mea-
surement. In general, copper(II)-phenoxyl radical complexes are EPR inactive or show the
characteristic EPR signal at ca. g = 4, due to the magnetic coupling of two unpaired electron
spins between the copper d-electron and the phenoxyl radical electron, resulting in S = 0
or 1 in total [39,76,77]. However, the solid sample and the frozen sample of the CH2Cl2
solution of [1]SbCl6 showed a significant isotropic EPR signal at ca. g = 2.0, which is of
similar intensity to the signal of the di(phenoxyl radical) copper(II) complex of the same
ligand, [1](SbCl6)2 (Figure 6) [65,67,68]. These results can be considered to show that all
unpaired electron spins in both the copper(II) ion and phenoxl radical line up ferromag-
netically in the one-dimensional chain of [1]SbCl6 by the π–π stacking interaction, which
is similar to the other ferromagnetic one-dimensional chain compounds. In fact, the solid
sample of [1]SbCl6 exhibited the ferromagnetic interaction intra- and inter-molecularly [65].
Thus, the π–π stacking interaction of the methylthio-phenoxyl radical moiety in [1]SbCl6
influences the electronic structure.
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Figure 6. ESR spectra of [1]SbCl6 (black line) and [1](SbCl6)2 (red line) in the solid state at 123 K.

4. The π–π Stacking Interaction of Phenoxyl Radical with an Indole Ring

In order to understand π-π stacking properties of the indole ring with the phenoxyl
radical, copper(II) and nickel(II) diphenolate salen-type complexes with two para-methoxy-
or para-methylthio-phenolate moieties and a side chain indole ring on the ethylenediamine
backbone were synthesized and characterized (Figure 7) [78–80]. Their one-electron oxi-
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dized complexes were characterized, particularly focusing on the different behavior of the
indole ring due to the oxidation state.
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Figure 7. Structures of copper(II) and nickel(II) diphenolate salen-type complexes with two para-
methoxy- or para-methylthio-phenolate moieties and a side chain group.

4.1. The π–π Stacking Interaction of Methoxyphenoxyl Radical with an Indole Ring

The X-ray crystal structure of copper(II) salen-type complex 3 having a pendent indole
ring and methoxy substitution at para-position of two phenolate moieties revealed no
significant intra- and inter-molecular interaction (Figure 8A), and thus the coordination
sphere of complex 3 was very similar to that of the MeO-salen complex without the pendent
indole ring Cu(MeO-salen) [65,73]. This result well supports the previous reports that the
indole ring does not interact with an electron-rich aromatic ring, such as the phenolate
moiety [79–85]. Complex 3 was oxidized by the addition of one equivalent of AgSbF6
as a one-electron oxidant in CH2Cl2 to form the one-electron oxidized complex [3]SbF6,
whose X-ray crystal structure revealed that [3]SbF6 consists of two crystallographically
independent species in the unit cell (Figure 8B,C) [78]. They showed similar structural char-
acteristics in the first coordination sphere, and one of the two Cu-O bonds in each species
was ca. 0.1 Å longer than the other, indicating that the radical electron was fully localized
on one of the phenolate moieties. Therefore, the two complexes in the unit cell could be as-
signed to the localized phenoxyl radical complexes described as [CuII(phenolate)(phenoxyl
radical)]+ [64]. The position of the indole ring in [3]SbF6 was completely different from that
in the neutral complex 3; the indole ring was found to lie on the phenoxyl radical moiety
of salen ligand by the π–π stacking interaction in both complexes. The distance between
indole ring and the phenoxyl radical moiety was determined to be ca. 3.4 Å, which is in
the acceptable range of the π–π stacking interaction [14,86]. Furthermore, this stacking
conformation of the indole ring and phenoxyl radical moiety showed the atom-over-bond
or atom-over-ring configuration, which is different from the π–π stacking interaction by
SOMO–SOMO overlapping [63]. These results indicate that the indole ring recognizes the
phenoxyl radical moiety and forms a π–π stacking structure with it selectively.
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Figure 8. X-ray crystal structures of Cu complexes having a pendent indole ring. (A) neutral complex
3. (B) one of the two crystallographically independent molecules in the unit cell of oxidized complex
[3]SbF6. (C) the other molecule of oxidized complex [3]SbF6 in the same unit cell.

The oxidized complex [3]+ also showed a different behavior in CH2Cl2 in comparison
with the complex having a side chain methyl group, [4]+ [78]. The CH2Cl2 solutions of
[3]+ and [4]+ exhibited the specific band in the NIR region, which was assigned to the phe-
nolate to phenoxyl radical intervalence charge transfer indicating the relatively localized
Cu(II)-methoxyphenoxyl radical on one of the phenolate moieties (Figure 9A) [46,53,66–68].
Notably, the NIR band of [3]+ (8700 cm−1) shifted to the higher energy region by 1100 cm−1

compared with that of [4]+ (7600 cm−1), showing that the phenoxyl radical moiety was
affected by the pendent indole ring. The energy difference could be estimated from this
NIR band difference to be 13 kJ/mol, which is in line with the energy of the π–π stacking
interaction (4–20 kJ/mol) [14,78,86]. Therefore, the indole-phenoxyl radical stacking in-
teraction was also maintained in the CH2Cl2 solution. It has been reported that the π–π
stacking interaction of the indole ring depends on the solvent properties [12,87]. In CH3CN
(dielectronic parameter [1/η2 − 1/ε] of CH3CN: 0.528; CH2Cl2: 0.382) a similar NIR band
shift to the higher energy region was also observed for [3]+ (9500 cm−1) in comparison with
[4]+ (8700 cm−1) [78]. In toluene (dielectric parameter [1/η2 − 1/ε]: 0.026), however, the NIR
band peak difference between [3]+ (8060 cm−1) and [Cu(MeO-salen)]+ (7880 cm−1) [65,73,88]
was rather small (Figure 9B), and the energy was estimated to be 2.4 kJ/mol. These results
are consistent with the fact that the π–π stacking interaction is more favored in the polar sol-
vent [78]. Furthermore, toluene, being an aromatic solvent, may be also effective for inhibition
of the intramolecular π–π stacking interaction by solvation.
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DFT calculations supported the intramolecular π–π stacking interaction of the indole
ring with the phenoxyl radical. The calculation results suggested that the π–π stacking
form is more stable than the open structure having no significant stacking interaction [78].
Furthermore, TD-DFT calculation of [3]+ showed that the NIR band of [3]+ consists of the
two characteristic components at 7175 cm−1 and 9291 cm−1 in CH2Cl2. The 7175-cm−1

band could be assigned to the intervalence charge transfer (IVCT) band from the phenolate
to the phenoxyl radical moiety as the transition from HOMO to LUMO [78]. The assignment
is in good agreement with the NIR peak of the complexes without a pendent indole moiety,
[4]+ and [Cu(MeO-salen)]+ [65,73]. On the other hand, the 9291-cm−1 band was assigned
to the charge transition from the indole moiety to the phenoxyl radical moiety. Such a
charge transfer band was also suggested at 28428 cm−1 (352 nm) by TD-DFT calculation
(Figure 10), which agrees well with the previous report on the appearance of the charge
transfer band in the near UV region due to aromatic ring stacking [12,79,87]. In fact, the
different UV-vis spectrum between [3]+ and [4]+ exhibited a band at 352 nm in CH2Cl2, and
the CD spectrum of [3]+ showed a significant CD peak at ca. 350 nm, which is considered to
be due to the proximal effect on the charge transfer band. The difference UV-vis spectrum
and the CD peak were solvent-dependent, and the UV band shift and the CD peak could
not be detected in toluene [78]. From the experimental and calculation results, the indole
ring was concluded to stabilize the phenoxyl radical by the π–π stacking interaction, where
it serves as an electron-donor to the phenoxyl radical moiety [78].
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Figure 10. (A) UV-vis-NIR spectrum of [3]+ in CH2Cl2 and band positions and intensities due to
the indole ring predicted by the TD-DFT calculations and drawn as vertical black lines. (B) TD-DFT
assignments of these transitions.

4.2. The π–π Stacking Interaction of Methylthiophenoxyl Radical with an Indole Ring

The methylthiophenoxyl radical complex [1]SbCl6 favors the π–π stacking interaction
in the solid state. As discussed in the previous section, its electronic structure is changed
from the localized phenoxyl radical species to the delocalized species by the stacking
interaction [65]. The effect of the proximal indole ring in the methylthiophenoxyl radical
complex could be clarified by characterization of complex 5 having the same coordination
structure as 1 but with a pendent indole ring.

One-electron oxidized complex [5]+ could be generated by the addition of 1 equivalent
of thianthrenyl cation radical salt (Th+SbCl6−) to the CH2Cl2 solution of 5. The UV-vis-NIR
spectrum of 5 showed a spectral feature similar to that of complex [1]SbCl6 in CH2Cl2,
suggesting that the phenoxyl radical was localized on one of the phenolate moieties in
CH2Cl2 [65]. In comparison with the other phenoxyl radical complexes having a side
chain, such as a methyl ([6]+) and a phenyl ([7]+) group, complex [5]+ exhibited the NIR
band assigned to the phenolate to phenoxyl radical IVCT at a quite different position [79].
The NIR band of complex [5]+ shifted to the higher energy region than the bands of [6]+

and [7]+ by ca. 1000 cm−1 (9.6 kJ/mol). This energy difference is in line with the energy
of π–π stacking interaction (4–20 kJ/mol) and the stabilization energy of the methoxy-
substituted complex [3]+, indicating that the pendent indole ring of [5]+ contacts with the
phenoxyl radical moiety by the π–π stacking interaction in CH2Cl2 solution [14,78,79,86].
Considering the difficulty of the stacking interaction between the two methylthiophenoxyl
radical complexes in CH2Cl2 solution of [1]SbCl6, the interaction of the indole ring is more
effective for perturbation of the methylthiophenoxyl radical [65,79]. On the other hand, it
is noticed that the phenyl group in [7]+ may not be effective for the perturbation by the
stacking interaction [79].

The methylthiophenoxyl radical complex [1]+ showed a significantly intense EPR
signal at ca. g = 2 in frozen solution, though copper(II)-phenoxyl radical complexes
such as [1]+ having a two-spin system with the magnetic interaction are generally EPR-
silent [65,67,68]. This can be considered to be due to the formation of a polymerization
structure in the frozen solution by intermolecular π–π stacking interaction, and thus the
intense EPR signal of the frozen sample of [1]+ may arise from various magnetic interactions
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in the polymerization structure [65]. Although complex [6]+ showed a similar intensity of
the EPR signal at g = ca. 2, complexes [5]+ and [7]+ exhibited the EPR intensity decrease
estimated to be more than 70% in the case of [5]+ [79]. The result indicates that the stacked
indole ring and phenyl group inhibited the formation of the polymerization structure by the
intermolecular stacking between the methylthiophenoxyl radical moieties, and as a result,
the electronic structure change of the methylthiophenoxyl radical to form the localized
phenoxyl radical species on one of the phenolate moieties was also inhibited [79]. DFT
calculation using gradient isosurfaces methods[89] suggested that complexes [5]+ and [7]+

could form the π–π stacking structure of the methylthiophenoxyl radical with the pendent
aromatic ring, with the indole ring showing a larger degree of the interaction than the
phenyl ring (Figure 11) [79]. Thus, the π–π stacking interaction of the pendent indole moiety
with the methylthiophenoxyl radical is more effective than the intermolecular stacking
between two methylthiophenoxyl radical moieties.
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4.3. The Effect of the Electronic Structure of the Phenoxyl Radical on π–π Stacking Interaction
with an Indole Ring

The above-mentioned discussions in this review focused mainly on the π–π stacking
interaction of the localized phenoxyl radical copper(II) complexes [78,79]. The ligand centered
oxidation metal complexes with the salen-type ligand sometime show that the radical unpaired
electron spin is delocalized on the two phenolate moieties [46,64,66,85,90–93]. The phenoxyl
radical localization and delocalization depend on the central metal ion. Copper(II) com-
plexes generally favor the localized phenoxyl radical described as [CuII(phenolate)(phenoxyl
radical)]+ [46,53,66–68], whereas some nickel complexes show the delocalization of the
radical to form [NiII(0.5-phenoxyl radical)2]+ configuration [46,64,66,75,81,93,94]. In this
section, the effect of the π–π stacking interaction of the indole ring with the 0.5-phenoxyl
radical moiety is discussed for the Ni(II) complex of the ligand of complex 3 having a
pendent indole ring as an example [80].

The neutral and the methoxyphenoxyl radical nickel(II) complexes, 8 and [8]SbF6,
were prepared by the procedures similar to those employed for the isolation of copper(II)
complexes 3 and [3]+, respectively, in 1,1,2,2-tetrachloroethane(C2H2Cl4)/n-hexane. The
X-ray crystal structures of complexes 8 and [8]+ revealed that the structures are very
similar to those of complexes 3 and [3]SbF6, respectively (Figure 12) [78,80]. Although
the neutral complex 8 showed no significant interaction of the pendent indole ring intra-
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and intermolecularly, the crystal structure of [8]SbF6 consisted of two different stacking
structures in the unit cell as revealed for [3]SbF6, the position of the phenolate ring stacked
with the indole moiety being different. In addition, details of the coordination structures of
the two molecules in the unit cell are different. The two Ni–O lengths of [8]SbF6 (a) were
the same (1.841(9) Å), whereas they were slightly different in the other molecule [8]SbF6
(b) (1.833(7) Å and 1.860(7) Å). The bond length between copper ion and the phenoxyl
radical oxygen atom is ca. 0.1 Å longer than that between copper ion and the phenolate
oxygen atom in complex [3]+, which was assigned to the phenoxyl radical localized on one
of the phenolate moieties [80]. Form the results, complex [8]SbF6 was mainly assigned
to the radical with the unpaired electron spin delocalized on two phenolate moieties,
described as [Ni(0.5-phenoxyl radical)2]. On the other hand, complex [8]+, which has the
structure showing no significant interaction of the pendent indole ring with the phenoxyl
radical moiety, could be isolated by changing the solvent from 1,1,2,2-tetrachloroethane to
chloroform. (Figure 12B). This result suggests that the π–π interaction in this complex may
be less favored than that in the localized phenoxyl radical complex [3]+ [80].
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Figure 12. X-ray crystal structures of Ni complexes having a pendent indole ring. (A) neutral complex
of 8. (B) one-electron oxidized complex [8]SbF6 with an open form crystallized from CHCl3/hexane.
(C) one of the two crystallographically independent molecules of oxidized complex [8]SbF6 with
a closed form crystallized from C2H2Cl4/hexane. (D) the other crystallographically independent
molecule of oxidized complex [8]SbF6.

Delocalization of the unpaired electron on the two phenolate moieties in [8]SbF6 was
maintained in CH2Cl2 solution, where [8]SbF6 showed the intense NIR band at 4700 cm−1

(ε = 16800 M−1cm−1) [78,79]. The intensity of this band was much stronger than that of
the localized phenoxyl radical copper(II) complexes (Figure 13) [80]. The NIR band feature
with a strong intensity and a narrow bandwidth could be assigned to the fully delocalized
system based on the mixed valence systems by Robin and Day classification [46,53,66–72].
Therefore, the radical unpaired electron fully delocalized on two phenolate moieties and
described as [Ni(0.5-phenoxyl radical)2]+ is maintained in the CH2Cl2 solution, which is in
good agreement with the other NiII-phenoxyl radical species of the salen-type ligands.

On the other hand, the indole ring in the phenoxyl radical complex [8]+ may be
considered to be in close contact with the 0.5-phenoxyl radical moiety in the CH2Cl2
solution, whereas the experimental difference between complexes with and without a
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pendent indole ring was rather small. The NIR band in the UV-vis-NIR spectrum of NiII-
phenoxyl radical of [8]+ exhibited a slight decrease in the intensity at 4700 cm−1 compared
with that of [9]+ but a slight intensity increase at 10200 cm−1 (Figure 13B) [80]. The results
indicated that the effect of the π–π stacking interaction of the indole ring with the phenoxyl
radical in complex [8]+ was rather small as compared with that in the copper complex
[3]+ [78,80]. In fact, the complex [8]+with an open structure could be isolated by using
a different solvent. Thus, the π–π stacking interaction of the indole ring with the 0.5-
phenoxyl radical moiety is less effective than that with the localized phenoxyl radical in
the symmetric two-phenolate ligand system [80].

Figure 13. (A) UV-vis-NIR spectra of [8]+ (red line) and [9]+ (blue line) in CH2Cl2. (B) expanded
view of the spectra of [8]+ (red line) and [9]+ (blue line) at NIR region.

TD-DFT calculation of complex [8]+ suggested that the NIR band characteristics of
[8]+ are different from those of the copper(II)-phenoxyl radical complexes and the oxidized
nickel(II)-salen complexes without the pendent indole moiety. Especially, the NIR band of
[8]+ at 10686.0 cm−1 was predicted as a characteristic transition from βHOMO-4 to LUMO.
The contribution of the Ni ion orbital in βHOMO-4 was estimated to be ca. 47%, whereas the
Ni ion contribution in LUMO was only 13% (Figure 14) [80]. Therefore, this band could be
described as a MLCT band from the Ni(II) ion to the indole ring. It should be mentioned in
this connection that the electronic structure of the one-electron oxidized Ni-salen complexes
could change from the Ni(II)-phenoxyl radical to the Ni(III)-phenolate state by addition
of exogenous ligands [94,95]. In addition, the transition at 9693.1 cm−1 was predicted to
be the LLCT band, which could be described as the charge transfer from the indole to
the delocalized phenoxyl radical (Figure 14) [80]. These CT-bands characteristics at ca.
10000 cm−1 support the close contact of the indole ring with the coordination plane in [8]+.
Thus, theoretical calculations showed that the indole moiety selectively interacts with the
phenoxyl radical moiety and stabilizes the nickel(II)-phenoxyl radical complex by the π–π
stacking interaction.
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Figure 14. (A) UV-vis-NIR spectrum of [8]+ in CH2Cl2 and band positions and intensities relevant
to the indole ring drawn as vertical black lines concerning the indole ring predicted by the TD-DFT
calculations. (B) TD-DFT assignments of these transitions.

5. Summary and Conclusions

The roles of the π–π stacking interaction in the metal-phenoxyl radical complexes
have been discussed in this review, especially focusing on the interaction of the alkylth-
iophenoxyl radical with the indole ring as seen in the single copper enzyme GO. GO has
an alkyltiophenoxyl radical bound to copper ions in the active site, and the indole moiety
of Trp 290 located at the proximal position of the phenoxyl radical is involved in the π–π
stacking interaction. The alkylthio group is important for the stabilization of the phenoxyl
radical state. In the absence of the alkylthio group, the phenoxyl radical is less stable and
is reduced by the electron transfer from indole, where the indole ring showed a different
mode of interaction from the π–π stacking interaction in the native form of GO.

The alkylthio-phenoxyl radical can be stabilized by the π–π stacking interaction, which
gives rise to a slightly different electronic structure. However, the electronic structure and
the effect of the π–π stacking interaction depend on the central metal ion. In contrast with
the van der Waals π–π stacking interaction in the copper complexes, the nickel complex
exhibits the SOMO–SOMO interaction. The π–π stacking interaction of the phenoxyl radical
with the indole ring significantly stabilizes the phenoxyl radical state, and the indole to
phenoxyl radical charge transfer can be detected in the NIR region in the absorption
spectrum. This assignment may be taken to show the close energy gap between indole and
phenoxyl radical. Therefore, a small perturbation of the phenoxyl radical can lead to the
electron transfer. These observations indicate that the π–π stacking interaction of phenoxyl
radical with the indole ring is more effective than that between two phenoxyl radicals, and
that the electronic structures of the phenoxyl radical can be controlled by the π–π stacking
interaction with the indole moiety.

Taken together, the π–π stacking interaction of the phenoxyl radical with the indole
ring is important in the active site of GO, and we believe that unique properties of the π–π
stacking interaction involving phenoxyl, indole and various other aromatic rings may lead
to novel functionalization of the metal complexes.
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