molecules-logo

Journal Browser

Journal Browser

Design, Modifications, and Medical Application of Polymer-Based Materials

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Materials Chemistry".

Deadline for manuscript submissions: 31 December 2025 | Viewed by 5496

Special Issue Editor


E-Mail Website
Guest Editor
School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
Interests: dental materials; resin bonding agents; physical properties; antibacterial properties; caries prevention; drug carrier compounds
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Polymer-based materials have become important in a variety of medical applications due to their versatility, biocompatibility, and ability to be customized for specific uses. The design and modification of these materials are crucial for enhancing their performance in medical settings, ranging from drug delivery systems to tissue engineering and prosthetics. Natural, synthetic, and semi-synthetic polymers are often used, depending on the intended purpose. Modifying the structure of polymeric materials is important for improving their properties for medical use. These modifications are often performed to optimize the materials for specific medical functions, such as controlled drug release or tissue regeneration. The medical applications of polymer-based materials are diverse and growing. Therefore, the key areas include drug delivery systems, wound healing, tissue engineering, medical devices, and diagnostics. The innovations in the design and modification of these materials will likely lead to more effective, safer, and personalized medical treatments. This Special Issue of Molecules will serve as a platform for analyzing the recent advances in design, modifications, and medical application of polymer-based materials.

I kindly invite you to submit contributions in the form of short communications, original research articles, and review papers.

Prof. Dr. Fusun Ozer
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • polymer-based materials
  • synthetic polymers
  • drug delivery systems
  • biocompatibility
  • biomaterials
  • tissue engineering
  • wound healing
  • medical devices

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

25 pages, 3597 KB  
Article
Morphology-Dependent Transformation of Dicalcium Phosphate Dihydrate (DCPD) to Octacalcium Phosphate (OCP) and Its Stability in Simulated Physiological Fluids
by Daniela Chávez-Herrera, Estefanía Rangel-Villanueva, Mercedes Salazar-Hernández, Alfonso Talavera-Lopez, Alba N. Ardila A., Rosa Hernández-Soto, Oscar Joaquín Solis-Marcial and Jose A. Hernández
Molecules 2025, 30(17), 3631; https://doi.org/10.3390/molecules30173631 - 5 Sep 2025
Abstract
Calcium phosphate (CaP) materials are biocompatible and non-toxic to the body. However, they lack biointegration, exhibit a low resorption rate and can cause fibrous encapsulation throughout the implant material. A promising approach for dental or orthopedic regeneration is the use of dicalcium phosphate [...] Read more.
Calcium phosphate (CaP) materials are biocompatible and non-toxic to the body. However, they lack biointegration, exhibit a low resorption rate and can cause fibrous encapsulation throughout the implant material. A promising approach for dental or orthopedic regeneration is the use of dicalcium phosphate dihydrate (DCPD) and octacalcium phosphate (OCP), as they are well-suited to bone components. From a novel perspective, these apatites can be used as drug carriers for individuals with low tolerance to common excipients. In this study, the transformation of DCPD into different morphologies in DMEM was investigated using an induced dissolution and reprecipitation reaction solution. The DCPD transformation time was observed to be morphology-dependent and can occur between 48 and 168 h. In the interaction with simulated body fluid (SBF), simulated gastric fluid (SGF) and a combination of both (BFS/SGF), a higher mass loss was observed in SGF (~80%) than in the other fluids (~35%). The structural changes presented in DCPD and OCP before and after immersion in physiological fluids were analyzed by ATR-FTIR, SEM, XRD and EDS. The obtained OCP showed low stability in SGF compared to SBF and SBF/SGF, which indicates that it may be a suitable candidate for drug delivery in the digestive tract. Full article
Show Figures

Figure 1

15 pages, 2358 KB  
Article
Effect of Print Orientation and Thermal Aging on the Flexural Strength of Zirconia-Reinforced Three-Dimensional-Printed Restorative Resin Materials
by Yunus Emre Özden, Bengü Doğu Kaya, Pınar Yılmaz Atalı, Fusun Ozer and Zeynep Ozkurt Kayahan
Molecules 2025, 30(11), 2337; https://doi.org/10.3390/molecules30112337 - 27 May 2025
Cited by 1 | Viewed by 825
Abstract
This study evaluated the effects of print orientation and thermal aging on the flexural strength (FS) and flexural modulus (FM) of novel permanent three-dimensional (3D)-printed polymethyl methacrylate (PMMA) resins reinforced with nano-zirconia and nano-silica. Bar-shaped specimens (25 × 2 × 2 mm) were [...] Read more.
This study evaluated the effects of print orientation and thermal aging on the flexural strength (FS) and flexural modulus (FM) of novel permanent three-dimensional (3D)-printed polymethyl methacrylate (PMMA) resins reinforced with nano-zirconia and nano-silica. Bar-shaped specimens (25 × 2 × 2 mm) were fabricated using a digital light processing (DLP) 3D printer (Asiga Max UV, Asiga Inc., Australia) in two orientations (0° and 90°). Specimens underwent three-point bending tests at 24 h and after artificial thermal aging (10,000 and 30,000 cycles) to simulate one and three years of intraoral conditions. Scanning electron microscopy (SEM) was used to analyze fracture patterns. Print orientation did not significantly affect FS or FM (p > 0.05). However, artificial aging significantly reduced FS and FM after 10,000 cycles (p < 0.001), with further deterioration after 30,000 cycles. The micro hybrid resin composite exhibited higher FS than the 3D-printed materials throughout aging. SEM analysis revealed distinct fracture patterns, with 3D-printed resins displaying radial fractures and the micro hybrid composite exhibiting horizontal fractures. These findings indicate that aging plays a more critical role in the long-term mechanical performance of 3D-printed restorative resins than print orientation. This study provides original data on the effects of print orientation and prolonged thermal aging on the mechanical behavior of permanent three-dimensional (3D)-printed dental resins. Furthermore, the comparative evaluation of aging protocols simulating one and three years of intraoral service represents a novel contribution to the existing literature. Further studies are required to optimize the mechanical durability of 3D-printed dental restorations. Full article
Show Figures

Figure 1

Review

Jump to: Research

18 pages, 2384 KB  
Review
A Review of Recent Progress in Synthetic Polymer Surface Coatings for the Prevention of Biofilm Formation
by Adrienne Shea and Matthew T. Bernards
Molecules 2025, 30(13), 2710; https://doi.org/10.3390/molecules30132710 - 24 Jun 2025
Viewed by 4169
Abstract
Bacterial adhesion and the subsequent formation of biofilms and biofouling have significant economic and health impacts across all sectors. They are especially impactful in industrial corrosion, healthcare, food processing, agriculture, and waste and drinking water. Synthetic polymers that resist bacterial adhesion are adaptable [...] Read more.
Bacterial adhesion and the subsequent formation of biofilms and biofouling have significant economic and health impacts across all sectors. They are especially impactful in industrial corrosion, healthcare, food processing, agriculture, and waste and drinking water. Synthetic polymers that resist bacterial adhesion are adaptable to a wide range of applications in all of these fields. While there are many bacteria-resistant polymers, some of the best performing include polyethylene glycol (PEG), poly(oxazoline) (POZ), and zwitterionic polymers, with zwitterionic polymers showing the most promise with reductions in bacteria adhesion up to 99% over controls. This review summarizes the demonstrated bacterial resistance performance of these polymer coatings based on literature published over the last ten years. It also identifies the front runners for preventing bacterial adhesion while providing the critical next steps for widespread adoption of this technology. Full article
Show Figures

Figure 1

Back to TopTop