Morphology-Dependent Transformation of Dicalcium Phosphate Dihydrate (DCPD) to Octacalcium Phosphate (OCP) and Its Stability in Simulated Physiological Fluids
Abstract
1. Introduction
2. Results and Discussion
2.1. Synthesis and Analysis of DCPD and OCP Degradation by Immersion in Different Simulated Fluids
2.2. Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) Spectroscopy of Synthesized DCPD Before and After Immersion in Simulated Fluids
2.3. Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) Spectroscopy of Synthesized OCP Before and After Immersion in Simulated Fluids
2.4. Scanning Electron Microscopy (SEM) of Synthesized DCPD Before and After Immersion in Simulated Fluids
2.5. Energy-Dispersive Spectroscopy (EDS) of Synthesized DCPD Before and After Immersion in Simulated Fluids
2.6. Scanning Electron Microscopy (SEM) of Synthesized OCP Before and After Immersion in Simulated Fluids
2.7. Energy-Dispersive Spectroscopy (EDS) of Synthesized OCP Before and After Immersion in Simulated Fluids
2.8. X-Ray Diffraction (XRD) of Synthesized DCPD Before and After Immersion in Simulated Fluids
2.9. X-Ray Diffraction (XRD) of Synthesized OCP Before and After Immersion in Simulated Fluids
3. Methods and Materials
3.1. DCPD Synthesis in Water Lily-Shaped Crystals (WL)
3.2. DCPD Synthesis in Flat Plate-Shaped Crystals (FP)
3.3. Transformation of DCPD in WL and FP Shape into OCP Using DMEM Solution
3.4. Preparation of Body Fluid (SBF) and Simulated Gastric Fluid (SGF)
3.5. Study of DCPD and OCP Changes After Immersion in SBF, SGF and SBF/SGF
3.6. Characterization of DCPD and OCP
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anaya-Barajas, D.; Aguilar-Pliego, J.; González-Vélez, V.; Vélez-Tirado, M. Biomaterials for Bone Tissue Regeneration Extracted from Fish Wastes. Rev. Mex. Ing. Biomed. 2019, 40, 1–10. [Google Scholar] [CrossRef]
- Dorozhkin, S.V. Calcium orthophosphates (CaPO4): Occurrence and properties. Prog. Biomater. 2016, 5, 9–70. [Google Scholar] [CrossRef] [PubMed]
- Canilla, M.; Pena, P.; H de Aza, A.; Rodriguex, M.A. Calcium phosphates for biomedical applications. Céramica Y Vidr. 2017, 56, 91–112. [Google Scholar] [CrossRef]
- Cheng, L.; Lin, T.; Khalaf, A.T.; Zhang, Y.; He, H.; Yang, L.; Yan, S.; Zhu, J.; Shi, Z. The preparation and application of calcium phosphate biomedical composites in filling of weight-bearing bone defects. Sci. Rep. 2021, 11, 4283. [Google Scholar] [CrossRef] [PubMed]
- Hurle, K.; Oliveira, J.M.; Reis, R.L.; Pina, S.; Goetz-Neunhoeffer, F. Ion-doped Brushite Cements for Bone Regeneration. Acta Biomater. 2021, 123, 51–71. [Google Scholar] [CrossRef] [PubMed]
- Barua, R.; Daly-Seiler, C.S.; Chenreghanianzabi, Y.; Markel, D.; Li, Y.; Zhou, M.; Ren, W. Comparing the physicochemical properties of dicalcium phosphate dihydrate (DCPD) and polymeric DCPD (P-DCPD) cement particles. J. Biomed. Mater. Res. Part B Appl. Biomater. 2021, 109, 1644–1655. [Google Scholar] [CrossRef]
- Teterina, A.Y.; Smirnov, I.V.; Fadeeva, I.S.; Fadeev, R.S.; Smirnova, P.V.; Minaychv, V.V.; Kobyakova, M.I.; Fedotov, A.Y.; Barinov, S.M.; Komlv, V.S. Octacalcium Phosphate for Bon Tissue Engineering Synthesis Modification and In Vitro Biocompatibility Assessment. Int. J. Mol. Sci. 2021, 22, 12747. [Google Scholar] [CrossRef]
- Shen, D.; Horiuchi, N.; Nozaki, S.; Miyashin, M.; Yamashita, K.; Nagai, A. Synthesis and enhanced bone regeneration of carbonate substituted octacalcium phosphate. Bio-Medical Mater. Eng. 2017, 28, 9–21. [Google Scholar] [CrossRef]
- Viswanath, B.; Ravishankar, N. Controlled synthesis of plate-shaped hydroxyapatite and implications for the morphology of the apatite phase in bone. Biomaterials 2008, 29, 4855–4863. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, S.Y.; Roh, Y.; Lee, J.; Kim, J.; Lee, Y.; Bang, J.; Lee, Y.J. Optimizing calcium phosphates by the control of pH and temperature via wet precipitation. J. Nanosci. Nanotechnol. 2015, 15, 10008–10016. [Google Scholar] [CrossRef]
- Habraken, W.J.; Wolke, J.G.; Jansen, J.A. Ceramic composites as matrices and scaffolds for drug delivery in tissue engineering. Adv. Drug Deliv. Rev. 2007, 59, 234–248. [Google Scholar] [CrossRef]
- Alshaaer, M.; Kailani, M.H.; Ababneh, N.; Abu Mallouh, S.A.; Sweileh, B.; Awidi, A. Fabrication of porous bioceramics for bone tissue applicationsusing luffa cylindrical fibres (LCF) as template. Process. Appl. Ceram. 2017, 11, 13–20. [Google Scholar] [CrossRef]
- Dong, D.; Su, H.; Li, X.; Jiang, H.; Shen, Z.; Liu, Y.; Yu, M.; Guo, Y.; Yang, P.; Zhang, Z.; et al. Influences of curing depth and layer thickness on forming accuracy and mechanical properties of biphasic calcium phosphate bioceramics fabricated by vat photopolymerization. J. Manuf. Process. 2024, 124, 1227–1238. [Google Scholar] [CrossRef]
- Somers, N.; Jean, F.; Lasgorceix, M.; Preux, N.; Delmotte, C.; Boilet, L.; Petit, F.; Leriche, A. Fabrication of doped β-tricalcium phosphate bioceramics by Direct Ink Writing for bone repair applications. J. Eur. Ceram. Soc. 2023, 43, 629–638. [Google Scholar] [CrossRef]
- Safitri, N.; Rauf, N.; Tahir, D. Enhancing drug loading and release with hydroxyapatite nanoparticles for efficient drug delivery: A review synthesis methods, surface ion effects, and clinical prospects. J. Drug Deliv. Sci. Technol. 2023, 90, 105092. [Google Scholar] [CrossRef]
- Mashak, A.; Bazraee, S.; Mobedi, H. Advances in drug delivery and biomedical applications of hydroxyapatite-based systems: A review. Bull. Mater. Sci. 2022, 45, 183. [Google Scholar] [CrossRef]
- Kolmas, J.; Krukowski, S.; Laskus, A.; Jurkitewicz, M. Synthetic hydroxyapatite in pharmaceutical applications. Ceram. Int. 2016, 42, 2472–2487. [Google Scholar] [CrossRef]
- Flores Valdez, J.D.; Sáenz Galindo, A.; López Badillo, C.M.; Castañeda Facio, A.O.; Acuña Vazquez, P. Hydroxyapatite and Biopolymer Composites with Promising Biomedical Applications. Rev. Mex. De Ing. Biomédica 2022, 43, 6–23. [Google Scholar] [CrossRef]
- Khalifehzadeh, R.; Arami, H. Biodegradable calcium phosphate nanoparticles for cancer therapy. Adv. Colloid Interface Sci. 2020, 279, 102157. [Google Scholar] [CrossRef]
- Boanini, E.; Silingardi, F.; Gazzano, M.; Bigi, A. Synthesis and Hydrolysis of Brushite (DCPD): The Role of Ionic Substitution. Cryst. Growth Des. 2021, 21, 1689–1697. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhao, J.; Peng, C.; Duan, X.; Deng, M.; Wen, J. Comparative analysis of petal epidermal wax composition and loss-water resistance in five cut lily cultivars (Lilium spp.). Sci. Hortic. 2023, 311, 111805. [Google Scholar] [CrossRef]
- Mandel, S.; Tas, A.C. Brushite (CaHPO42H2O) to octacalcium phosphate (Ca(HPO4)2(PO4)45H2O) transformation in DMEM solutions. Mater. Sci. Eng. C 2010, 30, 245–254. [Google Scholar] [CrossRef]
- Rabadjieva, D.; Sezanova, K.; Gergulova, R.; Titorenkova, R.; Tepavitcharova, S. Precipoitation and pase transformation of dicalcium phosphate dehydrate in electrolyte solutions of simulated body fluids: Thermodynamic modeling and kinetic studies. J. Biomed. Mater. Res. Part A 2020, 108, 1607–1616. [Google Scholar] [CrossRef] [PubMed]
- Shiwaku, Y.; Suzuki, O. Octacalcium phosphate effects on the systemic and local factors that regulate bone-cell activity. Octacalcium Phosphate Biomater. 2020, 17–36. [Google Scholar] [CrossRef]
- Ban, S.; Jinde, T.; Hasegawa, J. Phase Transformation of Octacalcium Phosphate in vivo and in vitro. Dent. Mater. J. 1992, 11, 130–140. [Google Scholar] [CrossRef] [PubMed]
- Komlev, V.S.; Bozo, I.I.; Deev, R.V.; Gurin, A.N. Bioactivity and effect of bone formation for octacalcium phosphate ceramics. Octacalcium Phosphate Biomater. 2020, 85–119. [Google Scholar] [CrossRef]
- Carino, A.; Ludwig, C.; Cervellino, A.; Müller, E.; Testino, A. Formation and transformation of calcium phosphate phases under biologically relevant conditions: Experiments and modelling. Acta Biomater. 2018, 74, 478–488. [Google Scholar] [CrossRef]
- Perez, L.; Shyu, L.J.; Nancollas, G.H. The Phase Transformation of Calcium Phosphate Dehydrate into Octacalcium Phosphate in Aqueous Suspensions. Colloids Surf. 1989, 38, 295–304. [Google Scholar]
- Temizel, N.; Girisken, G.; Tas, A.C. Accelerated transformation of brushite to octacalcium phosphate in new biomineralization media between 36.5 °C and 80 °C. Mater. Sci. Eng. C 2011, 31, 1136–1143. [Google Scholar] [CrossRef]
- Oliveira, C.; Georgieva, P.; Rocha, F.; Ferreira, A.; de Azevedo, S.F. Dynamical model of brushite precipitation. J. Cryst. Growth 2007, 305, 201–210. [Google Scholar] [CrossRef]
- Lu, X.; Leng, Y. Theoretical analysis of calcium phosphate precipitation in simulated body fluid. Biomaterials 2005, 26, 1097–1108. [Google Scholar] [CrossRef]
- Suzuki, O. Octacalcium phosphate (OCP)-based bone substitute materials. Jpn. Dent. Sci. Rev. 2013, 49, 58–71. [Google Scholar] [CrossRef]
- Jalota, S.; Bhaduri, S.B.; Tas, A.C. Using a synthetic body fluid (SBF) solution of 27 mM HCO3− to make bone substitutes more osteointegrative. Mater. Sci. Eng. C Mater. Biol. Appl. 2008, 28, 129–140. [Google Scholar] [CrossRef]
- Kumar, A.R.; Kalainathan, S. Microhardness studies on calcium hydrogen phosphate (brushite) crystals. Mater. Res. Bull. 2010, 45, 1664–1667. [Google Scholar] [CrossRef]
- Arifuzzaman, S.M.; Rohani, S. Experimental study of brushite precipitation. J. Cryst. Growth 2004, 267, 624–634. [Google Scholar] [CrossRef]
- Abs El-Ghany, M.F.; El-Kherbawy, M.I.; Abdel-Aal, Y.A.; El-Dek, S.I.; El-Baky, T.A. Comparative Study between Traditional and Nano Calcium Phosphate Fertilizaers on Growth ann Prodiuction of Snap Bean (Phaseolus vulgaris L.) Plant. Nanomaterials 2021, 11, 2913–2932. [Google Scholar] [CrossRef]
- Suryawanshi, V.B.; Chaudhari, R.T. Growth and characterization of Agar Gel Grown Brushite Crystals. Indian J. Mater. Sci. 2014, 2014, 189839. [Google Scholar] [CrossRef]
- Dabiri, S.M.H.; Lagazzo, A.; Barberis, F.; Shayganpour, A.; Finocchio, E.; Pastorino, L. New in-situ synthetized hydrogel composite based on alginate and brushite as a potential pH sensitive drug delivery system. Carbohydr. Polym. 2017, 177, 324–333. [Google Scholar] [CrossRef]
- Touny, A.H.; Dawkins, H.; Zhou, H.; Bhaduri, S.B. Hydrolysis of monetite/chitosan composites in α-MEM and SBF solutions. J. Mater. Sci. Mater. Med. 2011, 22, 1101–1109. [Google Scholar] [CrossRef]
- Ito, N.; Kamitakahara, M.; Yoshimura, M.; Ioku, K. Importance of nucleation in transformation of octacalcium phosphate to hydroxyapatite. Mater. Sci. Eng. C 2014, 40, 121–126. [Google Scholar] [CrossRef]
- Monsour, S.F.; El-dek, S.I.; Ahmed, M.A.; Abd-Elwahab, S.M.; Ahmed, M.K. Effect of preparation conditions on the nanostructure of hydroxyapatite and brushite phases. Appl. Nanosci. 2016, 6, 991–1000. [Google Scholar] [CrossRef]
- Aquib, M.; Alomar, M.; Answer, A.; Naseem, K.; Javaid, A.; Intisar, A.; Khan, S.; Ajaz, H.; Khan, I.H. Synthesis characterization and antimicrobial analysis of metal-doped (Zn2+ and Ag+) brushite powder for bone regeneration. Mater. Chem. Phys. 2024, 320, 129400. [Google Scholar] [CrossRef]
- Djošić, M.; Mišković-Stanković, V.; Kačarević-Popović, Z.; Jokić, B.; Bibić, N.; Mitrić, M.; Milonjić, S.; Jančić-Heinemann, R.; Stojanović, J. Electichemical synthesis of nanosized monetite powder and its electrophoretic deposition on titanium. Colloids Surf. A Physicochem. Eng. Asp. 2009, 341, 110–117. [Google Scholar] [CrossRef]
- Petrakova, N.V.; Teterina, A.Y.; Mikheeva, P.V.; Akhmedova, S.A.; Kuvshinova, E.A.; Sviridova, I.K.; Sergeeva, N.S.; Smirnov, I.V.; Fedotov, A.Y.; Kargin, Y.F.; et al. In vitro study of octacalcium phosphate behavior in different model solutions. ACS Omega 2021, 6, 7487–7498. [Google Scholar] [CrossRef]
- Lim, H.N.; Kassim, A.; Huang, N.M.; Lee, K.H.; Syahida, A.; Chia, C.H. High internal phase emulsion as reaction medium for precipitating brushite crystal. Ceram. Int. 2010, 36, 1503–1509. [Google Scholar] [CrossRef]
- Kong, J.; Yu, S. Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim. Biophys. Sin. 2007, 39, 549–559. [Google Scholar] [CrossRef]
- Disanto, G.; Benkert, P.; Lorscheider, J.; Mueller, S.; Vehoff, J.; Zecca, C.; Ramseier, S.; Achtnichts, L.; Findling, O.; Nedeltchev, K.; et al. The Swiss Multiple Sclerosis Cohort-Study (SMSC): A Prospective Swiss Wide Investigation of Key Phases in Disease Evolution and New Treatment Options. PLoS ONE 2016, 11, e0152347. [Google Scholar] [CrossRef]
- Sakai, S.; Anada, T.; Tsuchiya, K.; Yamazaki, H.; Margolis, H.C.; Suzuki, O. Comparative study on the resorbability and dissolution behavior of octacalcium phosphate, β-tricalcium phosphate, and hydroxyapatite under physiological conditions. Dent. Mater. J. 2016, 35, 216–224. [Google Scholar] [CrossRef]
- Habibovic, P.; Sees, T.M.; van den Doel, M.A.; van Blitterswijk, C.A.; de Groot, K. Osteoinduction by biomaterials--physicochemical and structural influences. J. Biomed. Mater. Res. Part A 2006, 77, 747–762. [Google Scholar] [CrossRef]
- Yokoi, T.; Kim, I.Y.; Ohtsuki, C. Mineralization of calcium phosphate on octacalcium phosphate in a solution mimicking in vivo conditions. Phosphorus Res. Bull. 2012, 26, 71–76. [Google Scholar] [CrossRef]
- Yassine, I.; Joudi, M.; Hafdi, H.; Hayimi, B.; Moudlar, J.; Bensemlai, M.; Nasrellah, H.; Abderrahim, M.; Bakasse, M. Synthesis of Brushite from Phophogypsum Industrial Waste. Biointerface Res. Appl. Chem. 2022, 12, 6580–6588. [Google Scholar] [CrossRef]
- Miller, M.A.; Kendall, M.R.; Jain, M.K.; Larson, P.R.; Madden, A.S.; Tas, A.C. Testing of Brushite (CaHPO4 2H2O) in synthetic Biomineralization and In Situ Crystallization of Brushite Micro-Granules. Am. Ceram. Soc. 2012, 95, 2178–2188. [Google Scholar] [CrossRef]
- Kajiyama, S.; Yokoi, T.; Sakamoto, T.; Ohtsuki, T.; Inoue, M.; Kato, T.; Nishimura, T. Rapid and topotactic transformation from octacalcium phosphate to hydroxyapatite (HAP): A new approach to self-organization of freestanding thin-film HAP-based nanohybrids. Cryst. Eng. Comm. 2016, 18, 8388–8395. [Google Scholar] [CrossRef]
- Asadollahzadeh, M.; Rabiee, S.M.; Kenari, H.S. In vitro apatite formation of calcium phosphate composite synthesized from fish bone. Int. J. Appl. Ceram. Technol. 2019, 16, 1969–1978. [Google Scholar] [CrossRef]
- Manafi, S.A.; Yazdani, B.; Rahimiopour, M.R.; Sadrnezhaad, S.K.; Amin, M.H.; Razari, M. Synthesis of nano-hydroxiapatite under a sonochemical/hydrothermal condiction. Biomed. Mater. 2008, 3, 025002. [Google Scholar] [CrossRef]
- Dorozhkin, S.V. Calcium orthophosphates (CaPO4): Occurrence and properties. Morphologie 2017, 101, 125–142. [Google Scholar] [CrossRef]
- Wang, L.; Nancollas, G.H. Calcium Orthophosphates: Crystallization and Dissolution. Chem. Rev. 2008, 108, 4628–4669. [Google Scholar] [CrossRef]
- Suzuki, O.; Shiwaku, Y.; Hamai, R. Octacalcium phosphate bone substitute materials: Comparison between properties of biomaterials and other calcium phosphate materials. Dent. Mater. J. 2020, 39, 187–199. [Google Scholar] [CrossRef]
- Tas, A.C. Granules of Brushite and Octacalcium Phosphate from Marble. J. Am. Ceram. Soc. 2011, 94, 3722–3726. [Google Scholar] [CrossRef]
- Anee, T.; Sundaram, N.M.; Arivuoli, D.; Ramasamy, P.; Kalkura, S.N. Influence of an organic and inorganic additive on the crystallization of dicalcium phosphate dihydrate. J. Cryst. Growth 2005, 285, 380–387. [Google Scholar] [CrossRef]
- Moseke, C.; Bayer, C.; Vorndran, E.; Barralet, J.E.; Groll, J.; Gbureck, U. Low temperature fabrication of spherical brushite by cement paste emulsion. J. Mater. Sci. Mater. Med. 2012, 23, 2631–2637. [Google Scholar] [CrossRef] [PubMed]
- Lu, B.-Q.; Willhammar, T.; Sun, B.-B.; Hedin, N.; Gale, J.D.; Gebauer, D. Introducing the crystalline phase of dicalcium phosphate monohydrate. Nat. Commun. 2020, 11, 1546. [Google Scholar] [CrossRef] [PubMed]
- Cama, G.; Gharibi, B.; Saif Sait, M.; Knowles, J.C.; Lagazzo, A.; Romeed, S.; Di Silvo, L.; Deb, S. A novel method of forming micro- and macroporous monetite cements. J. Mater. Chem. B 2013, 1, 958–969. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, H.; Yu, X.; Mo, X.; Gao, J.; Hu, Y.; Min, J.; Ding, Q.; Fan, Y.; Jiang, W. Effects of water on cold-sintered highly dense dicalcium phosphate anhydrous bioceramic using its hydrate. J. Am. Ceram. Soc. 2024, 107, 4631–4640. [Google Scholar] [CrossRef]
- Alexopoulou, M.; Mystiridou, E.; Mouzakis, D.; Zaoutsos, S.; Fatouros, D.G.; Bouropoulos, N. Preparation, characterization and in vitro assessment of ibuprofen loaded calcium phosphate/gypsum bone cements. Cryst. Res. Technol. 2016, 51, 41–48. [Google Scholar] [CrossRef]
- Kamieniak, J.; Banks, C.E.; Bernalte, E.; Foster, C.W.; Doyle, A.M.; Kelly, P.J. High Yield Synthesis of Hydroxyapatite (HAP) and Palladium Doped HAP via a Wet Chemical Synthetic Route. Catalysts 2016, 6, 119–133. [Google Scholar] [CrossRef]
- Bish, D.L.; Post, J.E. Quantitative mineralogical analysis using the Rietvetd full-pattern fitting method. Am. Mineral. 1993, 78, 932–940. [Google Scholar]
- Østereng Halvorsen, J.; Stacey, P.; Graff, P.; Folven Gjengedal, E.L.; Ervik, T.K. Application of X-ray diffraction with Rietveld refinement to quantify mineral composition including crystalline silica in respirable dust. J. Occup. Environ. Hyg. 2025, 22, 248–258. [Google Scholar] [CrossRef]
- He, W.; Xue, B.; Qian, Q.; Chen, S.; Fu, Z.; Wang, K. Mineralization of Octacalcium Phosphate under Magnetic Field. Crystals 2024, 14, 463–470. [Google Scholar] [CrossRef]
- Zhao, X.; Jiang, S.; Rao, J.; Zhou, J.; Li, Z.; Yang, J.; Yan, K.; Shi, H. Physicochemical and cytological properties of silicon-doping octacalcium phosphate. Mater. Lett. 2022, 328, 133137. [Google Scholar] [CrossRef]
- ISO 23317:2014; Implants for Surgery: In Vitro Evaluation for Apatite-Forming Ability of Implant Materials (3rd ed.). International Organization for Standardization: Geneva, Switzerland, 2014.
- Tian, B.; Chen, W.; Dong, Y.; Marymont, J.V.; Lei, Y.; Ke, Q.; Guo, Y.; Zhu, Z. Silver Nanoparticle-Loaded Hydroxyapatite Coating: Structure, Antibacterial Properties, and Capacity for Osteogenic Induction In Vitro. RSC Adv. 2016, 6, 8549–8562. [Google Scholar] [CrossRef]
- ASTM E1508-12a; Standard Guide for Quantitative Analysis by Energy-Dispersive Spectroscopy. ASTM International: West Conshohocken, PA, USA, 2019. [CrossRef]
WL | FP | Description | Reference |
---|---|---|---|
cm−1 | |||
3543 | 3541 | O-H extension in the H2O molecule | [14,33,34,35] |
3480 | 3470 | ||
3279 | 3254 | ||
3153 | 3152 | ||
2979 | O-H stretching | ||
2926 | |||
2876 | 2870 | ||
1720 w | 1717 w | Vibration of the HPO42− groups | [35,36,37] |
1644 | O-H bending and rotation mode in the H2O molecule | [33,36,41] | |
1625 | |||
1215 | Stretching due to P-O | [20,35,37] | |
1202 | |||
1123 | 1122 | Stretching vibrations ν′6 and ν″6 of the HPO4−2 groups | [35,36,41] |
1062 | Stretching of group PO43− and HPO42− | [35,36,38,39] | |
1050 | |||
980 | 978 | Asymmetric stretching of P-O | [20,33,34,37,38] |
877 | Asymmetric stretching of P-O-P | ||
785 | Asymmetric stretching of P-O | ||
773 | |||
651 | Bending mode O-P-O | ||
622 | |||
580 | 577 | Vibrations of phosphoric acid bonds (H-O-) P=O | |
530 | 527 |
BF | SGF | SBF/SBG | Description | Reference |
---|---|---|---|---|
cm−1 | ||||
3527 | O-H extension in the H2O molecule | [21,35,36,41,42,43,44] | ||
3548 | 3476 | |||
3282 | 3281 | |||
3149 | ||||
2969 | 2894 | O-H stretching | ||
2866 | 2881 | |||
1648 | 1652 | 1649 | O-H bending and rotation mode in the H2O molecule | |
1525 | 1527 | O-H-O bending mode of H2O residual | ||
1518 | ||||
1214 | P=O stretching of the PO23− groups | [35,36,37,38,43,44] | ||
1207 | ||||
1190 | Bending mode (O-H) in the HPO42− groups | [35,36,37,38,41,43,44] | ||
1185 | P-OH stretching | [38] | ||
1163 | ||||
1146 | 1144 | P=O stretching of the PO2− groups | [20,35,36,37,38,41,42,44] | |
1119 | Stretching vibrations ν’6 and ν’’6 of the HPO42− groups | |||
1075 | Stretching of the PO43− and HPO42− groups | [35,36,38,39] | ||
1063 | P=O stretching from the PO43− bond | [35,37,38,43,44] | ||
1057 | ν3 (P-O) stretching of the PO43− groups | [20,34,35,36,37,38,41,42,43] | ||
1023 | 1023 | ν1 stretching of the PO43− group | ||
981 | 985 | 981 | Asymmetric stretching of P-O | |
972 | Asymmetric stretching of P-O-P | |||
961 | ||||
921 | P=O stretching of the PO43− group | |||
877 | 876 | Asymmetric stretching of P-O-P | ||
862 | P-O stretching in the PO43− group | [35,36,37,38,41,42,43,44] | ||
790 | Release of O-H out of the bending plane | |||
715 | 719 | P=O stretching of the PO2− groups | ||
669 | 671 | 669 | P-O deformation mode | [20,37,44] |
612 | 612 w | Acid phosphate bond (H-O-) P=O | ||
606 | ||||
575 | P=O bending mode | |||
552 | 562 | |||
534 | O-P-O(H) bending mode | [34,35,36,41,43,44] |
SBF | SGF | SBF/SGF | Description | Reference |
---|---|---|---|---|
cm−1 | ||||
3625 | 3439 | O-H stretching in the H2O molecule | [20,34,35,42,43,44] | |
3372 | 3390 | |||
2960 | 2955 | O-H stretching | ||
2865 | 2875 | |||
1669 | Bending and rotation mode of O-H in the H2O molecule | |||
1639 | 1634 | |||
1575 | ||||
1515 | ||||
1402 | P-O-H bending mode | [35,36,37,38,41,43,44] | ||
1341 | 1341 w | |||
1292 | ||||
1207 | 1210 | P=O stretching of the PO2− groups | ||
1167 | P-OH stretching | [38] | ||
1159 | Stretching vibrations ν′6 and ν″6 of the HPO42− groups | [35,37,42,43,44] | ||
1146 | P=O stretching of the PO2− groups | |||
1139 | Stretching vibrations ν′6 and ν″6 of the HPO42− groups | |||
1126 | ||||
1074 | O-H-O bending mode from the H2O residual | [20,35,37,44] | ||
1065 | 1068 | |||
1023 | Stretching of the PO43− (ν1) group | |||
993 | Asymmetric stretching of P-O | |||
981 | ||||
940 | P-O stretching in the PO43− group | [20,35,36,37,41,42,43,44] | ||
931 | 928 | Asymmetric stretching of P-O-P | ||
890 | P-O stretching in the PO43− group | |||
877 | Asymmetric stretching of P-O-P | |||
715 | P=O stretching of the PO2− groups | |||
669 | 665 | P-O deformation mode | ||
612 w | 613 | Acid phosphate bond (H-O-) P=O | ||
583 | O-P-O(H) bending mode | [35,36,41,42,44] | ||
562 | ||||
553 | 534 | P=O bending mode | [20,37,41] |
WL | FP | Description | Reference |
---|---|---|---|
cm−1 | |||
3256 | 3253 | Stretching of the O-H extension in the H2O molecule | [20,34,35,44] |
1647 | 1640 | Bending and rotation mode of O-H in the H2O molecule | [8,23,36,37,38,42] |
1558 | Bending mode of CO32− (ν3) | ||
1403 | CO32− (ν3) stretching | ||
1332 | PO43− (ν3) stretching | ||
1293 | Stretching of the P-O groups | ||
1200 w | |||
1167 w | Bending mode of P-O | ||
1070 w | P-O stretching | [23,35,37] | |
1035 | PO43− (ν3) stretching | ||
1020 | |||
963 | ν1 (PO43−) stretching | [4,7,8,23] | |
950 | PO43− (ν3) stretching | [7,14,23,26,35,36,37,38,41] | |
909 | |||
881 | Bending mode of CO32− (ν3) | ||
859 | P-OH stretching | ||
665 w | Bending mode of PO43− (ν4) | [8,23,44] | |
606 | Bending mode of (ν4) PO43− | [23,35,43] | |
595 w | P-O(H) stretching | [4,8,23,43,44] | |
584 | |||
555 | Bending mode of O-P-O(H) | [8,23,44] |
SBF | SGF | SBF/SBG | Description | Reference |
---|---|---|---|---|
cm−1 | ||||
3340 | O-H stretching in the H2O molecule | [35,37,43,47,48,49] | ||
3213 | ||||
1640 | 1644 | Bending and rotation of O-H in the H2O molecule | [20,36,41,42,44] | |
1635 | ||||
1550 w | 1553 w | Bending mode of CO32− (ν3) | [35,41,48,49] | |
1465 w | 1470 w | Stretching of CO32− (ν3) | ||
1399 | 1398 w | Bending mode in the plane P-O-H | [41,43] | |
1327 s | ||||
1214 | P=O stretching of the groups PO2− | [36,37,38,41,43,44] | ||
1123 s | Stretching of HPO42− | [35,37,41,49] | ||
1096 s | Stretching of PO43− (ν3) | [35,43,44,49,50] | ||
1080 | ||||
1025 | 1020 | 1019 | ||
953 w | 958 w | Asymmetric stretching of P-O-P | [35,37] | |
937 | ||||
881 | Bending mode of CO32− (ν3) | [23,26,35,43,44] | ||
877 | ||||
856 | Stretching of HPO42− | |||
727 | 722 | Bending of O-H out of the plane | [35] | |
608 | Acid phosphate bond (H-O-) P=O | [20,37,44] | ||
604 | Bending mode of PO43− (ν3) | [7,35,44,49] | ||
589 | Bending mode of PO43− (ν4) | [23,35,41,44] | ||
562 | [20,37,44] | |||
558 | 558 | Vibrations of O-P-O | [23,35,41,44] |
SBF | SGF | SBF/SBG | Description | Reference |
---|---|---|---|---|
cm−1 | ||||
3322 | O-H stretching in the H2O molecule | [4,34,35,44] | ||
3298 | 3287 | |||
1640 | 1642 | Bending and rotation mode of O-H in the H2O molecule | [14,36,41,42,43,44] | |
1655 | ||||
1565 w | Bending mode of CO32− (ν3) | [23,35,43] | ||
1555 w | 1559 | |||
1450 w | 1457 | Stretching of CO32− (ν3) | ||
1405 | Bending mode in the plane P-O-H | |||
1215 w | 1214 | Stretching vibrations P=O of the PO2− groups | [23,26,35,43,44,50] | |
1119 w | Stretching of PO43− (ν3) | |||
1153 | Bending mode of P-OH | |||
1132 w | Stretching of HPO42− | |||
1081 | Stretching of PO43− (ν3) | |||
1086 | [35,36,38,39] | |||
1015 w | ||||
1030 | 1026 | [23,26,35,43,44,50] | ||
964 w | Asymmetric stretching of P-O-P | [35,37] | ||
938 | Bending mode of CO32− (ν2) | [23,35,43] | ||
881 w | 883 w | 883 w | ||
877 | Asymmetric stretching P-O-P | [20,34,35,37,38] | ||
722 | P=O stretching of the PO2− groups | [35,36,37,38,43,44] | ||
669 | Bending mode of PO43− (ν4) | [19,23,35,43,44,50] | ||
600 | 598 | 595 | ||
558 | 556 | Bending mode of P=O | [20,37,44] |
Biomaterials | C | O | Cl | Al | Na | Ca/P |
---|---|---|---|---|---|---|
FP | 19.41 | 43.76 | 0.91 | 1.26 | 0 | 1.16 ± 0.08 |
SBF | 14.535 | 43.24 | 0.43 | 1.4 | 1.4 | 1.10 ± 0.06 |
SGF | 7.805 | 45.05 | 1.34 | 0 | 0 | 1.26 ± 0.07 |
SBF/SGF | 49.02 | 44.17 | 1.09 | 0 | 0 | 1.11 ± 0.05 |
WL | 7.25 | 55.57 | 0 | 0.78 | 0 | 1.19 ± 0.08 |
SBF | 9.82 | 34.54 | 3.59 | 0 | 1.85 | 1.11 ± 0.06 |
SGF | 14.08 | 52.68 | 0 | 0.4 | 1.44 | 1.06 ± 0.03 |
SBF/SGF | 15.01 | 37.98 | 0 | 0.66 | 0 | 1.08 ± 0.04 |
Biomaterials | C | O | Cl | Na | Mg | Ca/P |
---|---|---|---|---|---|---|
OCP-FP | 17.25 | 43.3 | 0.31 | 0.52 | 0.23 | 1.31 ± 0.02 |
SBF | 12.32 | 25.37 | 7.67 | 6.12 | 0.32 | 1.30 ± 0.01 |
SGF | 23.86 | 44.71 | 0.67 | 0.35 | 0 | 1.36 ± 0.05 |
SBF/SGF | 14.98 | 37.52 | 0.32 | 0.33 | 0 | 1.29 ± 0.03 |
OCP-WL | 8.04 | 43.52 | 0 | 0.59 | 0 | 1.33 ± 0.04 |
SBF | 19.11 | 34.63 | 4.81 | 4.58 | 0.21 | 1.31 ± 0.03 |
SGF | 21.05 | 35.32 | 0.41 | 0.23 | 0 | 1.32 ± 0.05 |
SBF/SGF | 11.87 | 43.46 | 1.3 | 2.04 | 0.23 | 1.34 ± 0.06 |
Compound | SBF (10−3 mol/L) |
---|---|
NaCl | 142.9 |
NaHCO3 | 4.3 |
KCl | 7.4 |
K2HPO4 | 1.3 |
MgCl2 | 3.3 |
CaCl2 | 2.6 |
Na2SO4 | 0.51 |
Tris | 5.05 |
Compound | SIF, (10−3 mol/L) |
---|---|
NaOH | 38.2 |
Pancreatin | 2 * |
KH2PO4 | 0.050 |
HCl | 226.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chávez-Herrera, D.; Rangel-Villanueva, E.; Salazar-Hernández, M.; Talavera-Lopez, A.; Ardila A., A.N.; Hernández-Soto, R.; Solis-Marcial, O.J.; Hernández, J.A. Morphology-Dependent Transformation of Dicalcium Phosphate Dihydrate (DCPD) to Octacalcium Phosphate (OCP) and Its Stability in Simulated Physiological Fluids. Molecules 2025, 30, 3631. https://doi.org/10.3390/molecules30173631
Chávez-Herrera D, Rangel-Villanueva E, Salazar-Hernández M, Talavera-Lopez A, Ardila A. AN, Hernández-Soto R, Solis-Marcial OJ, Hernández JA. Morphology-Dependent Transformation of Dicalcium Phosphate Dihydrate (DCPD) to Octacalcium Phosphate (OCP) and Its Stability in Simulated Physiological Fluids. Molecules. 2025; 30(17):3631. https://doi.org/10.3390/molecules30173631
Chicago/Turabian StyleChávez-Herrera, Daniela, Estefanía Rangel-Villanueva, Mercedes Salazar-Hernández, Alfonso Talavera-Lopez, Alba N. Ardila A., Rosa Hernández-Soto, Oscar Joaquín Solis-Marcial, and Jose A. Hernández. 2025. "Morphology-Dependent Transformation of Dicalcium Phosphate Dihydrate (DCPD) to Octacalcium Phosphate (OCP) and Its Stability in Simulated Physiological Fluids" Molecules 30, no. 17: 3631. https://doi.org/10.3390/molecules30173631
APA StyleChávez-Herrera, D., Rangel-Villanueva, E., Salazar-Hernández, M., Talavera-Lopez, A., Ardila A., A. N., Hernández-Soto, R., Solis-Marcial, O. J., & Hernández, J. A. (2025). Morphology-Dependent Transformation of Dicalcium Phosphate Dihydrate (DCPD) to Octacalcium Phosphate (OCP) and Its Stability in Simulated Physiological Fluids. Molecules, 30(17), 3631. https://doi.org/10.3390/molecules30173631