Advanced Metal Casting Processes: Latest Research, Insights, and Challenges

A special issue of Metals (ISSN 2075-4701). This special issue belongs to the section "Metal Casting, Forming and Heat Treatment".

Deadline for manuscript submissions: 20 August 2025 | Viewed by 2904

Special Issue Editor


E-Mail Website
Guest Editor
Brunel Centre for Advanced Solidification Technology, Brunel University London, London UB8 3PH, UK
Interests: metal casting processes; aluminium alloys; metal foams; molten metal treatment; recycling; degassing; intermetallics; technology up-scaling; non-destructive testing; X-ray tomography; 3D image analysis; casting defects; mechanical properties

Special Issue Information

Dear Colleagues,

Metal casting is one of the oldest manufacturing techniques in human history, but it undergoes constant evolution in order to adapt to the particular needs of each era. The goal of this Special Issue is to foster innovative solutions to address current industrial challenges and provide fresh insights for the metal casting community. We will be covering all aspects of any metal casting process, including, but not limited to, low- and high-pressure die casting, sand and investment casting, etc., with particular interest on the latest industrial research and developments.

We welcome reviews and research studies on the following sub-topics:

  • Alloy and equipment development for process optimization;
  • Simulation approaches to predict solidification;
  • Sustainability and recyclability challenges;
  • Manufacture–structure–properties relationship;
  • Pre- and post-processing techniques to improve casting integrity;
  • Novel casting processes.

Dr. Jaime Lazaro-Nebreda
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Metals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • metal casting
  • process efficiency
  • process optimization
  • defect control
  • technology development
  • structure and properties improvement
  • sustainability
  • modelling and simulation

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

16 pages, 10963 KiB  
Article
Casting Simulation-Based Design for Manufacturing Backward-Curved Fan with High Shape Difficulty
by Chul Kyu Jin
Metals 2025, 15(2), 99; https://doi.org/10.3390/met15020099 - 21 Jan 2025
Viewed by 737
Abstract
A large-sized backward-curved fan with high shape difficulty was designed, and fan performance was roughly predicted from computational fluid dynamics. Three gating systems of aluminum sand casting were designed to fabricate the fan. The flow pattern and solidification process of molten metal were [...] Read more.
A large-sized backward-curved fan with high shape difficulty was designed, and fan performance was roughly predicted from computational fluid dynamics. Three gating systems of aluminum sand casting were designed to fabricate the fan. The flow pattern and solidification process of molten metal were analyzed by casting simulation. Three types were applied: bottom-up with four gates, bottom-up with ten gates, and top-down with a feeder. The simulation results of the bottom-up with four gates show that a large temperature loss occurs while molten metal flows into thin blades, and there is a temperature range below the liquidus temperature. Due to nonuniform temperature distribution, the solidification pattern is also not uniform. The bottom-up with ten gates shows almost similar flow and solidification patterns but has the effect of slightly reducing the temperature loss of molten metal. The top-down type has a much smaller temperature loss, while molten metal flows into the mold cavity compared to the bottom-up type and has a directional solidification pattern. As the feeder also acts as a riser to compensate for the shrinkage of the thick part, the simulation results regarding porosities are also significantly reduced. The fan cast as a top-down type has soundness without any unfilled parts. Full article
Show Figures

Figure 1

20 pages, 7103 KiB  
Article
Towards High-Quality Investment Casting of Ti-6Al-4V with Novel Calcium Zirconate Crucibles and Optimized Process Control
by Florian Bulling, Ulrich E. Klotz, Alexander Heiss, Lisa Freitag, Christina Faßauer and Christos G. Aneziris
Metals 2024, 14(11), 1222; https://doi.org/10.3390/met14111222 - 26 Oct 2024
Cited by 1 | Viewed by 1231
Abstract
The investment casting of titanium and its alloys relies on a high resistance of the crucibles and shell molds in terms of temperature and reactivity. The availability of ceramic crucibles that offer sufficient resistance to the titanium melt enables vacuum induction melting (VIM). [...] Read more.
The investment casting of titanium and its alloys relies on a high resistance of the crucibles and shell molds in terms of temperature and reactivity. The availability of ceramic crucibles that offer sufficient resistance to the titanium melt enables vacuum induction melting (VIM). CaZrO3 prepared from a mixture of CaO and ZrO2 as a raw material for refractory ceramics shows a high corrosion resistance against metallic melts even under very high temperatures up to 1800 °C. Crucibles and shell molds of CaZrO3 were successfully produced and used in subsequent casting trials. This study is focused on the refractory crucibles suitable for casting Ti-6Al-4V (Ti-64) using a tilt casting machine. In order to evaluate the crucible reaction and, therefore, the quality of the castings, chemical analyses, investigations of the microstructures and hardness measurements were carried out. Careful control of the melting duration is mandatory to avoid crucible reactions that otherwise result in contamination of the cast with oxygen and zirconium. This was achieved by modified coil geometries. Under optimized casting conditions, the oxygen and zirconium impurity limits of ASTM B367-09 for titanium castings were met. Based on the correlations found, optimized casting parameters with regard to material quantity, coil geometry and heating power could be determined in order to provide guidance for a high-quality casting process with VIM. Full article
Show Figures

Figure 1

Review

Jump to: Research

41 pages, 8599 KiB  
Review
Intermetallic Phase Control in Cast Aluminum Alloys by Utilizing Heterogeneous Nucleation on Oxides
by Gábor Gyarmati and János Erdélyi
Metals 2025, 15(4), 404; https://doi.org/10.3390/met15040404 - 4 Apr 2025
Viewed by 310
Abstract
With the increasing demand for premium-quality aluminum alloy castings that can be used as safety-critical structural components, as well as the rising urge to utilize sustainable materials during the manufacturing process, novel technologies need to be developed and implemented during the treatment of [...] Read more.
With the increasing demand for premium-quality aluminum alloy castings that can be used as safety-critical structural components, as well as the rising urge to utilize sustainable materials during the manufacturing process, novel technologies need to be developed and implemented during the treatment of liquid alloys. Impurity and alloying elements accumulate in recycled aluminum alloys, which frequently results in the formation of coarse intermetallic compound (IMC) particles in the microstructure that have a detrimental effect on the ductility of cast products. One successful approach to alleviate this negative effect relies on affecting the phase selection and refinement of IMC phases. A growing body of literature has shown that the crystallization process of IMCs is affected by the native oxide phases present in the liquid alloys. It has also been demonstrated that by appropriate technologies, harmful oxide inclusion (like oxide bifilms) can be transformed into small-sized oxide particles that can be dispersed throughout the liquid alloy to serve as heterogeneous nucleation sites for different phases. In this way, the adverse effects of oxide inclusions and IMCs are simultaneously mitigated. This contribution aims to review the recent progress of experimental and theoretical work related to intermetallic particle refinement by oxide phases. Emerging technological solutions capable of refining intermetallics through transforming harmful oxide inclusions into numerous, well-dispersed heterogeneous nucleation sites are comprehensively reviewed. Besides analyzing the current state of these techniques, this discussion evaluates their future implications and the potential challenges that may arise in their application and development. Full article
Show Figures

Figure 1

Back to TopTop