Laser Processing Technology for Metals

A special issue of Metals (ISSN 2075-4701). This special issue belongs to the section "Additive Manufacturing".

Deadline for manuscript submissions: 30 September 2025 | Viewed by 237

Special Issue Editor


E-Mail Website
Guest Editor
Department of Materials Science & Processing Automation, School of Materials Science and Engineering, Tianjin University, Tianjin, China
Interests: laser welding and Laser cladding; additive manufacturing; resistance spot welding; welding process monitoring and welding quality control; welding technology and equipment; modeling and simulation of materials processing

Special Issue Information

Dear Colleagues,

Innovations in advanced metal material processing methods signify progress in the engineering field. Laser processing of metallic materials is a high-precision, high-quality, and high-efficiency non-contact manufacturing approach. Over the past few decades, laser processing technology has not only driven advancements in cutting-edge manufacturing methods but has also profoundly influenced digitalization, networking, and intelligent manufacturing, emerging as a vital force for industrial transformation.

This Special Issue focuses on articles related to metal laser processing technologies, including, but not limited to, laser additive manufacturing, laser surface engineering, laser drilling and cutting, laser welding, and specialized laser processing.

We believe that the diversity of metallic materials and the versatility of laser processing will inspire boundless possibilities for future technological development. This Special Issue aims to advance the development of state-of-the-art laser processing methods and the exploration of innovative manufacturing techniques.

Prof. Dr. Zhen Luo
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Metals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • laser additive manufacturing
  • laser surface engineering
  • specialized laser processing
  • laser welding
  • laser drilling and cutting
  • microstructure and properties
  • laser processing simulation

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

21 pages, 3118 KiB  
Article
Path Planning for Rapid DEDAM Processing Subject to Interpass Temperature Constraints
by Glenn W. Hatala, Edward W. Reutzel and Qian Wang
Metals 2025, 15(6), 570; https://doi.org/10.3390/met15060570 - 22 May 2025
Viewed by 57
Abstract
Directed energy deposition (DED) additive manufacturing (AM) enables the production of components at a high deposition rate. For certain alloys, interpass temperature requirements are imposed to control heat accumulation and microstructure transformation, as well as to minimize distortion under varying thermal conditions. A [...] Read more.
Directed energy deposition (DED) additive manufacturing (AM) enables the production of components at a high deposition rate. For certain alloys, interpass temperature requirements are imposed to control heat accumulation and microstructure transformation, as well as to minimize distortion under varying thermal conditions. A typical strategy to comply with interpass temperature constraints is to increase the interpass dwell time, which can lead to an increase in the total deposition time. This study aims to develop an optimized tool path that ensures interpass temperature compliance and reduces overall deposition time relative to the conventional sequential deposition path during the DED process. To evaluate this, a compact analytic thermal model is used to predict the thermal history during laser-based directed energy deposition (DED-LB/M) hot wire (lateral feeding) of ER100S-G, a welding wire equivalent to high yield steel. A greedy algorithm, integrated with the thermal model, identifies a tool path order that ensures compliance with the interpass requirement of the material while minimizing interpass dwell time and, thus, the total deposition time. The proposed path planning algorithm is validated experimentally with in situ temperature measurements comparing parts fabricated with the baseline (sequential) deposition path to the modified path (resulting from the greedy algorithm). The experimental results of this study demonstrate that the proposed path planning algorithm can reduce the deposition time by 9.2% for parts of dimensions 66 mm × 73 mm × 16.5 mm, comprising 15 layers and a total of 300 beads. Predictions based on the proposed path planning algorithm indicate that additional reductions in deposition time can be achieved for larger parts. Specifically, increasing the (experimentally validated) part dimension perpendicular to the deposition direction by five-times is expected to result in a 40% reduction in deposition time. Full article
(This article belongs to the Special Issue Laser Processing Technology for Metals)
Show Figures

Graphical abstract

Back to TopTop