Additive Manufactured Metal Structural Materials

A special issue of Metals (ISSN 2075-4701). This special issue belongs to the section "Additive Manufacturing".

Deadline for manuscript submissions: 31 December 2025 | Viewed by 1339

Special Issue Editor


E-Mail Website
Guest Editor
School of Physics and Mechanics, Wuhan University of Technology, Wuhan 430070, China
Interests: metal structural materials; additive manufacturing; explosion and shock dynamics
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Additive manufacturing technology is a revolutionary technology that integrates digital manufacturing, intelligent manufacturing, and green manufacturing. It has the advantages of high design flexibility, low material waste, and strong personalized customization, which can significantly shorten the development cycle of products. It has been widely used in multiple fields, including automotive, medicine, aerospace, electronics, etc. Additive manufacturing technology has injected inexhaustible vitality into metal structural materials. Complex additive manufactured metal structural materials can be customized and evaluated, which will promote the rapid development of social economy and key industries.

In this Special Issue, we welcome articles that focus on the design, characterization, and evaluation of additive manufactured metal structural materials. Theoretical analysis, experimental tests, and numerical simulations are all welcome. Contributions to this Special Issue are highly valued and appreciated. We invite you to contribute research work and reviews that relate to the benefits of additive manufactured metal structural materials in today's world.

Dr. Xiaofei Cao
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Metals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • additive manufacturing
  • metal structural materials
  • manufacturing process
  • characterization methods
  • computing method
  • mechanical property
  • deformation behavior

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 30585 KB  
Article
Microstructure and Mechanical Properties of Ti35421 Alloy: A Comparison Between Laser Directed Energy Deposition (L-DED) and Rolling
by Zulei Liang, Bin Li, Jie Jiang, Hai Gu, Zhonggang Sun and Xianxiang Lu
Metals 2025, 15(9), 1033; https://doi.org/10.3390/met15091033 - 18 Sep 2025
Viewed by 282
Abstract
In this study, the newly developed Ti35421 (Ti3Al5Mo4Cr2Zr1Fe wt.%) alloy was prepared by laser directed energy deposition (L-DED) because it contains several major elements that can refine grains, which is expected to enable the transformation from columnar to equiaxed grains. The results show [...] Read more.
In this study, the newly developed Ti35421 (Ti3Al5Mo4Cr2Zr1Fe wt.%) alloy was prepared by laser directed energy deposition (L-DED) because it contains several major elements that can refine grains, which is expected to enable the transformation from columnar to equiaxed grains. The results show that the L-DED Ti35421 alloy is predominantly composed of equiaxed grains and features various α-phase morphologies, including grain boundary α, lath α, and acicular α′ structures. These microstructural features are attributed to the rapid cooling conditions during processing. Such a microstructure enhances the alloy’s tensile strength (1446 MPa) while leading to limited ductility (1.7%). Following the solution and aging treatment, the grain boundary α phase undergoes coarsening, while the matrix β phase transforms into numerous fine lamellar α phases. This leads to a reduction in strength but an improvement in ductility. Therefore, the optimal heat treatment process for the L-DED Ti35421 alloy is determined to be a two-stage procedure: first, heating at 780 °C for 2 h followed by air cooling, and subsequently heating at 575 °C for 8 h with air cooling. Under this treatment, the alloy exhibits excellent mechanical properties, including a tensile strength of 1196 MPa, a yield strength of 1162 MPa, an elongation of 6.8%, and a reduction in area of 16.7%. Since there are no continuous grain boundaries in α, the rolled Ti35421 alloy exhibits better ductility than the L-DED Ti35421 alloy. This article is a revised and expanded version of a poster presentation entitled “Microstructure and mechanical properties of Ti-3Al-5Mo-4Cr-2Zr-1Fe alloy fabricated by laser deposition manufacturing”, which was accepted and presented at the 15th World Conference on Titanium (Ti-2023), Edinburgh, UK, 12–16 June 2023. Full article
(This article belongs to the Special Issue Additive Manufactured Metal Structural Materials)
Show Figures

Figure 1

20 pages, 8934 KB  
Article
Numerical and Experimental Investigations on the Compressive Properties of the Graded BCC Lattice Cylindrical Shells Made of 316L Stainless Steel
by Yiting Guan, Wenjie Ma, Miao Cao, Hao Xu, Wenchang Luo, Weidong Cao, Siying Wang, Ying Qin, Xiaoyu Zhang and Xiaofei Cao
Metals 2025, 15(8), 895; https://doi.org/10.3390/met15080895 - 10 Aug 2025
Viewed by 777
Abstract
Uniform and graded BCC lattice cylindrical shells were proposed, and the corresponding structural specimens were fabricated with 316L stainless steel material. Experimental testing and numerical simulations were both utilized to investigate the quasi-static and dynamic compression behavior of the uniform and graded BCC [...] Read more.
Uniform and graded BCC lattice cylindrical shells were proposed, and the corresponding structural specimens were fabricated with 316L stainless steel material. Experimental testing and numerical simulations were both utilized to investigate the quasi-static and dynamic compression behavior of the uniform and graded BCC lattice cylindrical shells. Finite element results were compared with the experimental results. Parametric studies were conducted to study the effects of relative density, gradient distribution, and loading velocity on the mechanical properties and deformation features. When the relative density increased from 9% to 25%, a 175% increase in SEA could be seen. Graded BCC lattice cylindrical shells almost exhibited the same mechanical performance. When compared with the SEA value under low-speed loading conditions, a 26.95% maximum increase could be witnessed in the graded-5 specimen under high-speed loading. Testing results indicated that the proposed uniform and graded BCC lattice cylindrical shells exhibited fascinating quasi-static and dynamic mechanical behavior, which provided guidance for the design and application of next-generation lightweight materials with excellent protective properties. Full article
(This article belongs to the Special Issue Additive Manufactured Metal Structural Materials)
Show Figures

Figure 1

Back to TopTop