Special Issue "Advances in Blockchain Technology"

A special issue of Mathematics (ISSN 2227-7390). This special issue belongs to the section "Mathematics and Computer Science".

Deadline for manuscript submissions: 15 February 2023 | Viewed by 20630

Special Issue Editor

Dr. Jan Lansky
E-Mail Website
Guest Editor
Department of Informatics and Mathematics, University of Finance and Administration, University of Finance and Administration, Prague, Czech Republic
Interests: cryptocurrency; security; XML; data compression; education

Special Issue Information

Dear Colleagues,

Nowadays, blockchain technology is an integral part of scientific progress. So far, various methods have been used to solve problems considered to be challenging. This technology has the potential to offer tools for finance, e-commerce, eHealth, data storage, supply chain management, and Internet of Things. Therefore, blockchain technology can be understood as general purpose technology. This type of technology is defined as technologies that have the potential to have a major effect on society through their impact on the existing economic, as well as social, structures.

This Special Issue will focus on recent theoretical and practical studies of blockchain technology, with a focus on cryptocurrencies, cryptoassets, and tokens. Topics include, but are not limited to, the following: 

  1. Distributed Consensus;
  2. Cryptographic Methods and Security;
  3. Performance and Scalability Issues;
  4. Anonymity and Privacy;
  5. Network and Transaction Analysis;
  6. Cryptocurrency and Cryptoassets;
  7. Blockchain Platforms;
  8. Smart Contracts;
  9. Decentralized Applications;
  10. Decentralized Financial Services;
  11. Token Economy;
  12. Investment in Cryptocurrencies;
  13. Macroeconomic Studies;
  14. Social Aspects and Regulations.

Dr. Jan Lansky
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Mathematics is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • cryptocurrencies
  • cryptoassets
  • blockchain
  • distributed consensus
  • smart contracts
  • decentralized applications
  • tokens

Published Papers (13 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Article
Clustering and Modelling of the Top 30 Cryptocurrency Prices Using Dynamic Time Warping and Machine Learning Methods
Mathematics 2022, 10(19), 3672; https://doi.org/10.3390/math10193672 - 07 Oct 2022
Viewed by 550
Abstract
Cryptocurrencies are a new field of investment opportunities that has experienced a significant growth in the last decade. The crypto market was capitalized at more than USD 3000 bn, having grown from USD 10 m over the period 2011–2021. Generating high returns, investments [...] Read more.
Cryptocurrencies are a new field of investment opportunities that has experienced a significant growth in the last decade. The crypto market was capitalized at more than USD 3000 bn, having grown from USD 10 m over the period 2011–2021. Generating high returns, investments in cryptocurrencies have also shown high levels of price volatility. By comparing the performance of cryptocurrencies (measured by the crypto index) and standard equities (included in the S&P 500 index), we found that the former has outperformed the latter 14 times over the last two years. In the present paper, we analyzed the 2012–2022 global crypto market developments and main constituents. With a focus on the top 30 cryptocurrencies and their prices, as of 9 April 2022, covering data of the two major market stress events—outbreaks of the COVID-19 pandemic (February 2020) and the Russian invasion of Ukraine (February 2022). We applied the dynamic time warping method including barycentre averaging and k-Shape clustering of time series. The use of the dynamic time warping has been essential for the preparation of data for subsequent clustering and forecasting. In addition, we compared performance of cryptocurrencies and equities. Cryptocurrency time series are rather short, sometimes involving high levels of volatility and including multiple data gaps, whereas equity time series are much longer and well-established. Identifying similarities between them allows analysts to predict crypto prices by considering the evolution of similar equity instruments and their responses to historical events and stress periods. Moreover, we tested various forecasting methods on the 30 cryptocurrencies to compare traditional econometric methods with machine learning approaches. Full article
(This article belongs to the Special Issue Advances in Blockchain Technology)
Show Figures

Figure 1

Article
Neural Fairness Blockchain Protocol Using an Elliptic Curves Lottery
Mathematics 2022, 10(17), 3040; https://doi.org/10.3390/math10173040 - 23 Aug 2022
Cited by 1 | Viewed by 463
Abstract
To protect participants’ confidentiality, blockchains can be outfitted with anonymization methods. Observations of the underlying network traffic can identify the author of a transaction request, although these mechanisms often only consider the abstraction layer of blockchains. Previous systems either give topological confidentiality that [...] Read more.
To protect participants’ confidentiality, blockchains can be outfitted with anonymization methods. Observations of the underlying network traffic can identify the author of a transaction request, although these mechanisms often only consider the abstraction layer of blockchains. Previous systems either give topological confidentiality that may be compromised by an attacker in control of a large number of nodes, or provide strong cryptographic confidentiality but are so inefficient as to be practically unusable. In addition, there is no flexible mechanism to swap confidentiality for efficiency in order to accommodate practical demands. We propose a novel approach, the neural fairness protocol, which is a blockchain-based distributed ledger secured using neural networks and machine learning algorithms, enabling permissionless participation in the process of transition validation while concurrently providing strong assurance about the correct functioning of the entire network. Using cryptography and a custom implementation of elliptic curves, the protocol is designed to ensure the confidentiality of each transaction phase and peer-to-peer data exchange. Full article
(This article belongs to the Special Issue Advances in Blockchain Technology)
Show Figures

Figure 1

Article
On Proof-of-Accuracy Consensus Protocols
Mathematics 2022, 10(14), 2504; https://doi.org/10.3390/math10142504 - 19 Jul 2022
Cited by 3 | Viewed by 818
Abstract
Consensus protocols are a fundamental part of any blockchain; although several protocols have been in operation for several years, they still have drawbacks. For instance, some may be susceptible to a 51% attack, also known as a majority attack, which may suppose a [...] Read more.
Consensus protocols are a fundamental part of any blockchain; although several protocols have been in operation for several years, they still have drawbacks. For instance, some may be susceptible to a 51% attack, also known as a majority attack, which may suppose a high risk to the trustworthiness of the blockchains. Although this attack is theoretically possible, executing it in practice is often regarded as arduous because of the premise that, with sufficiently active members, it is not ’straightforward’ to have much computing power. Since it represents a possible vulnerability, the community has made efforts to solve this and other blockchain problems, which has resulted in the birth of alternative consensus protocols, e.g., the proof of accuracy protocol. This paper presents a detailed proposal of a proof-of-accuracy protocol. It aims to democratize the miners’ participation within a blockchain, control the miners’ computing power, and mitigate the majority attacks. Full article
(This article belongs to the Special Issue Advances in Blockchain Technology)
Show Figures

Figure 1

Article
Cryptocurrency Forecasting: More Evidence of the Meese-Rogoff Puzzle
Mathematics 2022, 10(13), 2338; https://doi.org/10.3390/math10132338 - 04 Jul 2022
Cited by 1 | Viewed by 1039
Abstract
This paper tests the random walk hypothesis in the cryptocurrency market. Based on the well-known Meese–Rogoff puzzle, we evaluate whether cryptocurrency returns are predictable or not. For this purpose, we conduct in-sample and out-of-sample analyses to examine the forecasting power of our model [...] Read more.
This paper tests the random walk hypothesis in the cryptocurrency market. Based on the well-known Meese–Rogoff puzzle, we evaluate whether cryptocurrency returns are predictable or not. For this purpose, we conduct in-sample and out-of-sample analyses to examine the forecasting power of our model built with autoregressive components and lagged returns of BITCOIN, compared with the random walk benchmark. To this end, we considered the 13 major cryptocurrencies between 2018 and 2022. Our results indicate that our models significantly outperform the random walk benchmark. In particular, cryptocurrencies tend to be far more persistent than regular exchange rates, and BITCOIN (BTC) seems to improve the predictive accuracy of our models for some cryptocurrencies. Furthermore, while the predictive performance is time varying, we find predictive ability in different regimes before and during the pandemic crisis. We think that these results are helpful to policymakers and investors because they open a new perspective on cryptocurrency investing strategies and regulations to improve financial stability. Full article
(This article belongs to the Special Issue Advances in Blockchain Technology)
Show Figures

Figure 1

Article
Delegated Proof of Accessibility (DPoAC): A Novel Consensus Protocol for Blockchain Systems
Mathematics 2022, 10(13), 2336; https://doi.org/10.3390/math10132336 - 03 Jul 2022
Cited by 2 | Viewed by 921
Abstract
As the backbone of every blockchain application, the consensus protocol is impacted by numerous risks, namely resource requirements and energy consumption, which limit the usage of blockchain. Applications such as IoT/IIoT cannot use these high-cost consensus methods due to limited resources. Therefore, we [...] Read more.
As the backbone of every blockchain application, the consensus protocol is impacted by numerous risks, namely resource requirements and energy consumption, which limit the usage of blockchain. Applications such as IoT/IIoT cannot use these high-cost consensus methods due to limited resources. Therefore, we introduce Delegated Proof of Accessibility (DPoAC), a new consensus technique that employs secret sharing, PoS with random selection, and an interplanetary file system (IPFS).DPoAC is decomposed into two stages. During the initial stage, a secret is generated by a randomly chosen super node and divided into n shares. These shares are encrypted and stored in different n nodes on the IPFS network. The nodes will compete to access these shareholders to reconstruct the secret. The winning node will be awarded block generation rights. PoS with random selection is used in the second stage to compute the appropriate hash value and construct a block with valid transactions. In this novel approach, a node with few computational resources and small stakes can still obtain block generation rights by providing access to secret shares and reconstructing the secret, making the system reasonably fair. We qualitatively analyze and compare our scheme based on performance parameters against existing mainstream consensus protocols in the context of IoT/IIoT networks. Full article
(This article belongs to the Special Issue Advances in Blockchain Technology)
Show Figures

Figure 1

Article
Reminisce: Blockchain Private Key Generation and Recovery Using Distinctive Pictures-Based Personal Memory
Mathematics 2022, 10(12), 2047; https://doi.org/10.3390/math10122047 - 13 Jun 2022
Viewed by 1053
Abstract
As a future game-changer in various industries, cryptocurrency is attracting people’s attention. Cryptocurrency is issued on blockchain and managed through a blockchain wallet application. The blockchain wallet manages user’s digital assets and authenticates a blockchain user by checking the possession of a user’s [...] Read more.
As a future game-changer in various industries, cryptocurrency is attracting people’s attention. Cryptocurrency is issued on blockchain and managed through a blockchain wallet application. The blockchain wallet manages user’s digital assets and authenticates a blockchain user by checking the possession of a user’s private key. The mnemonic code technique represents the most widely used method of generating and recovering a private key in blockchain wallet applications. However, the mnemonic code technique does not consider usability to generate and recover a user’s private key. In this study, we propose a novel approach for private key generation and recovery. Our approach is based on the idea that a user can hold long-term memory from distinctive pictures. The user can generate a private key by providing pictures and the location of the pictures. For recovering a private key, the user identifies the locations of the pictures that are used in the private key generation process. In this paper, we experiment with the security and usability of our approach and confirm that our proposed approach is sufficiently secure compared to the mnemonic code technique and accounts for usability. Full article
(This article belongs to the Special Issue Advances in Blockchain Technology)
Show Figures

Figure 1

Article
FORT: Right-Proving and Attribute-Blinding Self-Sovereign Authentication
Mathematics 2022, 10(4), 617; https://doi.org/10.3390/math10040617 - 17 Feb 2022
Cited by 1 | Viewed by 946
Abstract
Nowadays, there are a plethora of services that are provided and paid for online, such as video streaming subscriptions, car-share, vehicle parking, purchasing tickets for events, etc. Online services usually issue tokens that are directly related to the identities of their users after [...] Read more.
Nowadays, there are a plethora of services that are provided and paid for online, such as video streaming subscriptions, car-share, vehicle parking, purchasing tickets for events, etc. Online services usually issue tokens that are directly related to the identities of their users after they sign up to a platform; users need to authenticate themselves by using the same credentials each time they use the service. Likewise, when using in-person services, such as going to a concert, after paying for this service, the user usually receives a ticket, which proves that he/she has the right to use that service. In both scenarios, the main concerns surround the centralization of these systems and that they do not ensure customers’ privacy. The involved service providers are trusted third parties—authorities that offer services and handle private data about users. In this paper, we designed and implemented FORT, a decentralized system that allows customers to prove their rights to use specific services (either online or in-person) without revealing sensitive information. To achieve decentralization, we proposed a solution where all of the data are handled by a blockchain. We describe and uniquely identify users’ rights using non-fungible tokens (NFTs), and possession of these rights is demonstrated by using zero-knowledge proofs—cryptographic primitives that allow us to guarantee customers’ privacy. Furthermore, we provide benchmarks of FORT, which show that our protocol is efficient enough to be used in devices with low computing resources, such as smartphones or smartwatches, which are devices commonly used in our use case scenario. Full article
(This article belongs to the Special Issue Advances in Blockchain Technology)
Show Figures

Figure 1

Article
BCmECC: A Lightweight Blockchain-Based Authentication and Key Agreement Protocol for Internet of Things
Mathematics 2021, 9(24), 3241; https://doi.org/10.3390/math9243241 - 14 Dec 2021
Cited by 1 | Viewed by 1401
Abstract
In this paper, targeting efficient authentication and key agreement in an IoT environment, we propose an Elliptic Curve Cryptography-(ECC) based lightweight authentication protocol called BCmECC which relies on a public blockchain to validate the users’ public key to provide desired security. We evaluate [...] Read more.
In this paper, targeting efficient authentication and key agreement in an IoT environment, we propose an Elliptic Curve Cryptography-(ECC) based lightweight authentication protocol called BCmECC which relies on a public blockchain to validate the users’ public key to provide desired security. We evaluate the security of the proposed protocol heuristically and validate it formally, which demonstratse the high level of the security. For the formal verification we used the widely accepted formal methods, i.e., BAN logic and the Scyther tool. In this paper we also analyse the security of recently proposed blockchain-based authentication protocols and show that this protocol does not provide the desired security against known session-specific temporary information attacks in which the adversary has access to the session’s ephemeral values and aims to retrieve the shared session key. In addition, the protocol lacks forward secrecy, in which an adversary with access to the server’s long-term secret key can retrieve the previous session keys, assuming that the adversary has already eavesdropped the transferred messages over a public channel in the target session. The proposed attacks are very efficient and their success probability is ‘1’, while the time complexity of each attack could be negligible. Besides, we show that BCmECC is secure against such attacks. Full article
(This article belongs to the Special Issue Advances in Blockchain Technology)
Show Figures

Figure 1

Article
A Novel Auction Blockchain System with Price Recommendation and Trusted Execution Environment
Mathematics 2021, 9(24), 3214; https://doi.org/10.3390/math9243214 - 13 Dec 2021
Viewed by 1376
Abstract
Online auctions are now widely used, with all the convenience and efficiency brought by internet technology. Despite the advantages over traditional auction methods, some challenges still remain in online auctions. According to the World Business Environment Survey (WBES) conducted by the World Bank, [...] Read more.
Online auctions are now widely used, with all the convenience and efficiency brought by internet technology. Despite the advantages over traditional auction methods, some challenges still remain in online auctions. According to the World Business Environment Survey (WBES) conducted by the World Bank, about 60% of companies have admitted to bribery and manipulation of the auction results. In addition, buyers are prone to the winner’s curse in an online auction environment. Since the increase in information availability can reduce uncertainty, easy access to relevant auction information is essential for buyers to avoid the winner’s curse. In this study, we propose an Online Auction Price Suggestion System (OAPSS) to protect the data from being interfered with by third-party programs based on Intel’s Software Guard Extensions (SGX) technology and the characteristics of the blockchain. Our proposed system provides a smart contract by using α-Sutte indicator in the final transaction price prediction as a bidding price recommendation, which helps buyers to reduce the information uncertainty on the value of the product. The amount spent on the smart contract in this study, excluding deployed contracts, plus the rest of the fees is less than US$1. Experimental results of the simulation show that there is a significant difference (p < 0.05) between the recommended price group and the actual price group in the highest bid. Therefore, we may conclude that our proposed bidder’s price recommendation function in the smart contract may mitigate the loss of buyers caused by the winner’s curse. Full article
(This article belongs to the Special Issue Advances in Blockchain Technology)
Show Figures

Figure 1

Article
E-Learning Development Based on Internet of Things and Blockchain Technology during COVID-19 Pandemic
Mathematics 2021, 9(24), 3151; https://doi.org/10.3390/math9243151 - 07 Dec 2021
Cited by 5 | Viewed by 1824
Abstract
The suspension of institutions around the world in early 2020 due to the COVID-19 virus did not stop the learning process. E-learning concepts and digital technologies enable students to learn from a safe distance while continuing their educational pursuits. Currently, the Internet of [...] Read more.
The suspension of institutions around the world in early 2020 due to the COVID-19 virus did not stop the learning process. E-learning concepts and digital technologies enable students to learn from a safe distance while continuing their educational pursuits. Currently, the Internet of Things (IoT) is one of the most rapidly increasing technologies in today’s digital world; and e-learning is one of the most powerful learning methods available. In today’s world, smart devices and new technologies assist teachers in concentrating on new models of student learning while avoiding time wastage. By examining the characteristics of the Internet of Things and the challenges that exist in the field of e-learning, the potential functions, benefits, and advancements of utilizing the Internet of Things in online education are identified and discussed. This article examines the existing and future condition of the Internet of Things world as it pertains to the topic of education and sophisticated capabilities available through the Internet of Things that enable the application of e-learning after an architecture has been designed. Students’ pulse rates, brain waves, and skin resistance are measured in real time by a collection of IoT sensors, including cameras, microphones, and wearable gadgets. By utilizing the proposed architecture, universities can change their distance learning tactics to maximize resources and boost efficiency without changing their overall academic activities. According to the study’s findings, e-learning has a favorable and statistically significant impact on students’ flexibility, learning experience, educational productivity, and overall quality of education. Full article
(This article belongs to the Special Issue Advances in Blockchain Technology)
Show Figures

Figure 1

Article
Probability Models of Distributed Proof Generation for zk-SNARK-Based Blockchains
Mathematics 2021, 9(23), 3016; https://doi.org/10.3390/math9233016 - 24 Nov 2021
Cited by 3 | Viewed by 1586
Abstract
The paper is devoted to the investigation of the distributed proof generation process, which makes use of recursive zk-SNARKs. Such distributed proof generation, where recursive zk-SNARK-proofs are organized in perfect Mercle trees, was for the first time proposed in Latus consensus protocol for [...] Read more.
The paper is devoted to the investigation of the distributed proof generation process, which makes use of recursive zk-SNARKs. Such distributed proof generation, where recursive zk-SNARK-proofs are organized in perfect Mercle trees, was for the first time proposed in Latus consensus protocol for zk-SNARKs-based sidechains. We consider two models of a such proof generation process: the simplified one, where all proofs are independent (like one level of tree), and its natural generation, where proofs are organized in partially ordered set (poset), according to tree structure. Using discrete Markov chains for modeling of corresponding proof generation process, we obtained the recurrent formulas for the expectation and variance of the number of steps needed to generate a certain number of independent proofs by a given number of provers. We asymptotically represent the expectation as a function of the one variable n/m, where n is the number of provers m is the number of proofs (leaves of tree). Using results obtained, we give numerical recommendation about the number of transactions, which should be included in the current block, idepending on the network parameters, such as time slot duration, number of provers, time needed for proof generation, etc. Full article
(This article belongs to the Special Issue Advances in Blockchain Technology)
Show Figures

Figure 1

Article
Motivations, Barriers and Risk-Taking When Investing in Cryptocurrencies
Mathematics 2021, 9(14), 1655; https://doi.org/10.3390/math9141655 - 14 Jul 2021
Cited by 3 | Viewed by 3394
Abstract
The cryptocurrency market is very young, volatile, and highly risky. By the end of 2020, a new bull run started, and the prices of several cryptocurrencies reached record-breaking highs. The factors affecting this rise of cryptocurrencies include the impacts of the COVID-19 pandemic, [...] Read more.
The cryptocurrency market is very young, volatile, and highly risky. By the end of 2020, a new bull run started, and the prices of several cryptocurrencies reached record-breaking highs. The factors affecting this rise of cryptocurrencies include the impacts of the COVID-19 pandemic, the economic crisis and the global increase in the inflation rate, as well as the gradual acceptance and adoption of cryptocurrencies by people worldwide. This exploratory research is focused on this last factor, i.e., using cryptocurrency and with it, the associated support of its ecosystem (e.g., mining, staking). A survey was carried out investigating the motivational factors and barriers to investment in cryptocurrency for Czech representatives of Generations Y and Z (18–42 years; n = 468). The geographic scope was nationwide, and quota sampling was used. Notably, this survey was carried out prior to the global COVID-19 pandemic outbreak, and it is thus not affected by the pandemic and its related economic impacts. The article investigates the dependency between the individual motivational factors and barriers from the perspective of the tendency to take risks (using the risk propensity scale), according to gender and representation of Generations Y and Z. The lack of information on this form of investment is considered as the main barrier to investment in cryptocurrency, with respect to sex and generations. Compared to that, a negative experience with investment in cryptocurrency constitutes the most minor barrier. Respondents that have a tendency to take risks are mostly put off by their lack of experience with investment in general. The main motivational factor for investment in cryptocurrency, with respect to sex and generations, is considered to be the speed of increase in cryptocurrency value. On the other hand, the least encouraging factor is the opportunity to use the high volatility of cryptocurrency for speculative trading. Interestingly, this factor mostly encourages respondents that do not have a tendency to take risks. The findings are discussed, along with the presentation of their implications for practice and the directions of further explanatory research. Full article
(This article belongs to the Special Issue Advances in Blockchain Technology)
Article
Analysis and Evaluation of Barriers Influencing Blockchain Implementation in Moroccan Sustainable Supply Chain Management: An Integrated IFAHP-DEMATEL Framework
Mathematics 2021, 9(14), 1601; https://doi.org/10.3390/math9141601 - 07 Jul 2021
Cited by 5 | Viewed by 2743
Abstract
Blockchain technology has received wide attention during recent years, and has huge potential to transform and improve supply chain management. However, its implementation in the SSCM (Sustainable Supply Chain Management) strategy is sophisticated, and the challenges are not explored very well, especially in [...] Read more.
Blockchain technology has received wide attention during recent years, and has huge potential to transform and improve supply chain management. However, its implementation in the SSCM (Sustainable Supply Chain Management) strategy is sophisticated, and the challenges are not explored very well, especially in the Moroccan context. To this end, the chief objective of the current endeavor is to investigate the barriers that hinder the adoption of blockchain technology in SSCM from the Moroccan industry and service sectors’ perspective. Based on a comprehensive literature search and the use of experts’ viewpoints, the barriers affecting the successful implementation of blockchain are classified into three categories called TEO: technological and system, environmental, and intra-organizational dimensions. In this context, a fuzzy group decision-making framework is organized by combining DEMATEL (Decision-Making Trial and Evaluation Laboratory) and IFAHP (Intuitionistic Fuzzy Analytic Hierarchy Process). The IFAHP technique helps to determine the importance/priorities of barriers affecting blockchain adoption, while the DEMATEL technique forms the cause–effect interconnections between these barriers and classifies them concerning the degree of importance and relationships. The results reveal that ‘government policy and support’ and ‘challenges in integrating sustainable practices and blockchain technology through SCM’ are significant adoption barriers of blockchain in Moroccan SSCM. The proposed solution can support industrial decision makers to form flexible short- and long-term decision-making strategies to efficiently manage a sustainable supply chain. Full article
(This article belongs to the Special Issue Advances in Blockchain Technology)
Show Figures

Figure 1

Back to TopTop