Special Issue "Corrosion and Corrosion Protection for Light Metals/Alloys"

A special issue of Materials (ISSN 1996-1944).

Deadline for manuscript submissions: 30 June 2020.

Special Issue Editor

Prof. Takahiro Ishizaki
E-Mail Website
Guest Editor
Shibaura Institute of Technology, Tokyo, Japan

Special Issue Information

Dear Colleagues,

Light metals, including aluminum and magnesium, and so on, and their alloys, offer excellent mechanical properties, such as high specific strength and good ductility. Therefore, they are expected to be used as stractural materials for transportation parts in order to mitigate CO2 emissions. However, their low corrosion resistance has restricted their application in corrosive environments. Up to now, various surface treatments such as anodization and chemical conversion have been developed. However, there is still plenty of room to improve them. There is a need, therefore, for a novel corrotion protection or coating technology that is capable of improving the corrosion resistance of the light metals.

Great importance in corrosion protection is enabling of uniform formation of film and its higher chemical stability in corrosive environments. This can be achieved by surface pre-treatment or modificaion of microstructure of substrate. Thus, this Special Issue focuses on not only a novel corrotion protection or coating technology to improve corrosion resitance of the light metals but also corrosion mechanism of light metals responsible for improvement of corrision resistance and for the effect of corrosion protection by surface pre-treatment or modificaion of microstructure of substrate.

Prof. Takahiro Ishizaki
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Light metals
  • Corrosion Protection
  • Coating
  • Corrosion Resistance
  • Corrosion
  • Microstructure

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Open AccessArticle
Guar Gum as an Eco-Friendly Corrosion Inhibitor for Pure Aluminium in 1-M HCl Solution
Materials 2019, 12(16), 2620; https://doi.org/10.3390/ma12162620 - 16 Aug 2019
Abstract
Guar gum (GG) was investigated as a possible eco-friendly corrosion inhibitor for pure aluminium in a 1-M HCl solution at different temperatures and immersion times using gravimetric and electrochemical techniques. The results showed that GG was a good corrosion inhibitor for pure aluminium [...] Read more.
Guar gum (GG) was investigated as a possible eco-friendly corrosion inhibitor for pure aluminium in a 1-M HCl solution at different temperatures and immersion times using gravimetric and electrochemical techniques. The results showed that GG was a good corrosion inhibitor for pure aluminium in the studied environment. The inhibition efficiency of GG increased with increasing inhibitor concentration and immersion time but decreased with increasing temperature. Polarisation measurements revealed that GG was a mixed type inhibitor with a higher influence on the cathodic reaction. The adsorption behaviour of the investigated inhibitor was found to obey the Temkin adsorption isotherm and the calculated values of the standard free adsorption energy indicate mixed-type adsorption, with the physical adsorption being more dominant. The associated activation energy (Ea) and the heat of adsorption (Qa) supported the physical adsorption nature of the inhibitor. Fourier-transform infrared spectroscopy (FTIR) and Raman/SERS were used to explain the adsorption interaction between the inhibitor with the surface of the metal. The results suggested that most inhibition action of GG is due to its adsorption of the metal surface via H-bond formation. Full article
(This article belongs to the Special Issue Corrosion and Corrosion Protection for Light Metals/Alloys)
Show Figures

Figure 1

Open AccessFeature PaperArticle
Effect of Microstructure on the Corrosion Resistance of TIG Welded 1579 Alloy
Materials 2019, 12(16), 2615; https://doi.org/10.3390/ma12162615 - 16 Aug 2019
Abstract
The paper studies microstructure, chemical composition and corrosion activity of the tungsten inert gas welded joint of the Al-Mg-Sc alloy. An intensive corrosion attack of the heat affected zone (HAZ) was found due to precipitation of secondary phases at recrystallized grain boundaries. The [...] Read more.
The paper studies microstructure, chemical composition and corrosion activity of the tungsten inert gas welded joint of the Al-Mg-Sc alloy. An intensive corrosion attack of the heat affected zone (HAZ) was found due to precipitation of secondary phases at recrystallized grain boundaries. The ccorrosion process initiated along the boundary of α-Al grains, where a high concentration of anodic (Mg2Si and Mg2Al3) and cathodic phases ((MnFe)Al6) was observed. Increased temperatures during welding led to coalescence of the anodic phases in HAZ. Additionally, HAZ was found to be enriched with hard intermetallic compounds (Mg2Si and (MnFe)Al6). This area had a higher microhardness (930 MPa) compared to base metal (BM, 895 MPa) and fusion zone (FZ, 810 MPa). The volume fraction of secondary phases was 26% in BM, 28% in FZ and 38% in HAZ. The average grain size increased in the following order: (9 ± 3) µm (BM) < (16 ± 3) µm (HAZ) < (21 ± 5) µm (FZ). A plasma electrolytic oxidation (PEO) coating of aluminum-based material was applied to protect the weld from oxidation. The PEO-coating provided a high corrosion protection in the aggressive Cl-containing environment. Full article
(This article belongs to the Special Issue Corrosion and Corrosion Protection for Light Metals/Alloys)
Show Figures

Graphical abstract

Open AccessArticle
Effect of Sn Addition on Microstructure and Corrosion Behavior of As-Extruded Mg–5Zn–4Al Alloy
Materials 2019, 12(13), 2069; https://doi.org/10.3390/ma12132069 - 27 Jun 2019
Cited by 1
Abstract
The effect of Sn addition on the microstructure and corrosion behavior of extruded Mg–5Zn–4Al–xSn (0, 0.5, 1, 2, and 3 wt %) alloys was investigated by optical microscopy (OM), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray [...] Read more.
The effect of Sn addition on the microstructure and corrosion behavior of extruded Mg–5Zn–4Al–xSn (0, 0.5, 1, 2, and 3 wt %) alloys was investigated by optical microscopy (OM), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), electrochemical measurements, and immersion tests. Microstructural results showed that the average grain size decreased to some degree and the amount of precipitates increased with the increasing amount of Sn. The extruded Mg–5Zn–4Al–xSn alloy mainly consisted of α-Mg, Mg32(Al,Zn)49, and Mg2Sn phases as the content of Sn was above 1 wt %. Electrochemical measurements indicated that the extruded Mg–5Zn–4Al–1Sn (ZAT541) alloy presented the best corrosion performances, with corrosion potential (Ecorr) and corrosion current density (Icorr) values of −1.3309 V and 6.707 × 10−6 A·cm−2, respectively. Furthermore, the corrosion mechanism of Sn is discussed in detail. Full article
(This article belongs to the Special Issue Corrosion and Corrosion Protection for Light Metals/Alloys)
Show Figures

Figure 1

Open AccessArticle
Effect of Al Content in the Mg-Based Alloys on the Composition and Corrosion Resistance of Composite Hydroxide Films Formed by Steam Coating
Materials 2019, 12(7), 1188; https://doi.org/10.3390/ma12071188 - 11 Apr 2019
Abstract
Mg alloys are expected to be used in fields of the transportation industry because of their lightweight property, however, they show low corrosion resistance. To improve the corrosion resistance, preparation of the protective film on Mg alloys is essential. In this study, composite [...] Read more.
Mg alloys are expected to be used in fields of the transportation industry because of their lightweight property, however, they show low corrosion resistance. To improve the corrosion resistance, preparation of the protective film on Mg alloys is essential. In this study, composite hydroxide films were prepared on three types of Mg alloys with different aluminum contents—that is, AZ31, AZ61, and AZ91D—by steam coating to investigate the relationship between the Mg-Al layered double hydroxide (LDH) content in the film and the Al content in the Mg alloys. Scanning electron microscopy (SEM) observation demonstrated that films were formed densely on all Mg alloy surfaces. X-ray diffraction (XRD) analyses revealed that all films prepared on AZ61 and AZ91D were composed of Mg(OH)2, AlOOH, and Mg-Al LDH, while the film containing Mg(OH)2 and Mg-Al LDH were formed only on AZ31. The Mg-Al LDH content in the film prepared on AZ61 was relatively higher than those prepared on AZ31 and AZ91D. The content of AlOOH in the film increased with an increase in the Al content in the Mg alloys. The film thickness changed depending on the treatment time and type of Mg alloy. Polarization curve measurements in 5 mass% NaCl solution demonstrated that the film prepared on the AZ61 showed complete passive behavior within the potential range of −1.0 to −0.64 V. In addition, immersion tests in 5 mass% NaCl aqueous solution for 480 h demonstrated that the film on the AZ61 had superior durability against 5 mass% NaCl aqueous solution. These results indicated that the film on the AZ61 had the most superior corrosion resistance among all samples. The results obtained in this study suggest that the LDH content in the film could be related to the corrosion resistance of the film. Full article
(This article belongs to the Special Issue Corrosion and Corrosion Protection for Light Metals/Alloys)
Show Figures

Figure 1

Open AccessArticle
Corrosion Resistance of 2060 Aluminum–Lithium Alloy LBW Welds Filled with Al-5.6Cu Wire
Materials 2018, 11(10), 1988; https://doi.org/10.3390/ma11101988 - 15 Oct 2018
Cited by 5
Abstract
Alloy sheets of type 2060 aluminum–lithium were welded by laser beam welding (LBW) filled with ER2319 Al-5.6Cu wire. Microstructural observations showed the uneven distribution of columnar grains, equiaxed grains and equiaxed dendrite grains in the weld. The θ′(Al2Cu) phase and other [...] Read more.
Alloy sheets of type 2060 aluminum–lithium were welded by laser beam welding (LBW) filled with ER2319 Al-5.6Cu wire. Microstructural observations showed the uneven distribution of columnar grains, equiaxed grains and equiaxed dendrite grains in the weld. The θ′(Al2Cu) phase and other phases precipitated in the weld. The θ′(Al2Cu) phase centrally distributed at the grain boundaries. During the immersion corrosion, the pitting corrosion first occurred and then gradually expanded and transformed to intergranular corrosion and exfoliation corrosion. The electrochemical corrosion test showed a higher corrosion tendency of the base metal and heat-affected zone for the lower corrosion potential, but the corrosion current density of the weld was relatively larger. The segregation of Cu, Mg and other elements at the grain boundary aggravated the occurrence of intergranular corrosion. Full article
(This article belongs to the Special Issue Corrosion and Corrosion Protection for Light Metals/Alloys)
Show Figures

Figure 1

Open AccessFeature PaperArticle
Effect of Vapor Pressure During the Steam Coating Treatment on Structure and Corrosion Resistance of the Mg(OH)2/Mg-Al LDH Composite Film Formed on Mg Alloy AZ61
Materials 2018, 11(9), 1659; https://doi.org/10.3390/ma11091659 - 08 Sep 2018
Abstract
Corrosion resistant films with almost the same film thickness were prepared on the magnesium alloy AZ61 by steam coating at different vapor pressure and treatment times. The effect of the vapor pressure on the structures and the corrosion resistance of the films was [...] Read more.
Corrosion resistant films with almost the same film thickness were prepared on the magnesium alloy AZ61 by steam coating at different vapor pressure and treatment times. The effect of the vapor pressure on the structures and the corrosion resistance of the films was investigated by using FE-SEM, SEM-EDX, GAXRD, and potentiodynamic polarization curve measurements in a 3.5 mass percentage NaCl aqueous solution. These studies clarified that the interlayers of Mg-Al Layered Double Hydroxide (LDHs) increased and its structure became non-uniform with an increase in the vapor pressure. The corrosion current density slightly increased with an increase in the vapor pressure during the treatment, but pitting corrosion occurred at both low and high vapor pressures. These results indicate that water molecules were pushed into an interlayer of Mg-Al LDHs by high vapor pressure. Consequently, the interlayer distance of Mg-Al LDH was widened and the cracks were generated in the anti-corrosive film. On the other hand, the Mg-Al LDH with an insufficiently large interlayer distance could not fill the cracks in the Mg(OH)2 crystallites and caused pitting corrosion when the vapor pressure was low. Full article
(This article belongs to the Special Issue Corrosion and Corrosion Protection for Light Metals/Alloys)
Show Figures

Graphical abstract

Back to TopTop