Topical Collection "Advanced Biomaterials for Cells Adhesion, Proliferation and Differentiation"

A topical collection in Materials (ISSN 1996-1944). This collection belongs to the section "Biomaterials".

Editor

Prof. Dr. Guoping Chen
E-Mail Website
Guest Editor
Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
Fax: 81-29-860-4706
Interests: scaffolds; porous materials; nanobiomaterials; biomimetic materials; extracellular matrices; composite materials; surface modification; micropatterning; hydrogels; tissue engineering

Topical Collection Information

Dear Colleagues,

Cells adhesion, proliferation and differentiation are involved in various natural phenomena, such as embryogenesis, histogenesis, maintenance of tissue structure, immune response, metastasis, wound healing, as well as tissue integration of biomaterial. Lack of native tissue integration is one of frequent problems associated with the biomaterials surfaces of dental implants. It has prompted a significant body of research regarding the modification of these surfaces. Therefore, there is a constant need to find advanced biomaterials which are very closely related to cell behaviors and particularly to cell adhesion, proliferation and differentiation, that aim to restore a patient’s mobility and alleviate pains.

Properties of biomaterials and scaffolds, such as pore structures, mechanical properties and degradation, play a pivotal role in accomplishment of their functions for tissue repairing or regeneration. Surface characteristics of materials, whether their topography, chemistry or surface energy, play an essential part in cell–material interaction and implant integration.

This Special Issue will focus on the recent progress of biopolymers, biometals, bioceramics, biomimetic materials, nanobiomaterials, scaffolds, porous materials, composite materials, smart biomaterials for cell responses in terms of adhesion, spreading, viability, proliferation and differentiation.

Prof. Dr. Guoping Chen

Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the collection website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Biopolymers
  • biometals
  • bioceramics
  • biomimetic materials
  • nanobiomaterials
  • scaffolds
  • porous materials
  • composite materials
  • smart biomaterials
  • hydrogels
  • extracellular matrices
  • surface modification
  • tissue engineering
  • micropatterns
  • nanopatterns
  • regenerative medicine
  • stem cells
  • cell adhesion
  • cell proliferation
  • differentiation
  • photothermal therapy
  • cell–material interaction
  • cell encapsulation
  • biocompatibility
  • biodegradation

Published Papers (17 papers)

2019

Jump to: 2018

Open AccessArticle
The Influence of Astaxanthin on the Proliferation of Adipose-derived Mesenchymal Stem Cells in Gelatin-Methacryloyl (GelMA) Hydrogels
Materials 2019, 12(15), 2416; https://doi.org/10.3390/ma12152416 - 29 Jul 2019
Abstract
Recently, astaxanthin, a red lipophilic pigment belonging to the xanthophyllic family of carotenoids, has shown the feasibility of its uses in tissue engineering and regenerative medicine, due to its excellent antioxidant activities and its abilities to enhance the self-renewal potency of stem cells. [...] Read more.
Recently, astaxanthin, a red lipophilic pigment belonging to the xanthophyllic family of carotenoids, has shown the feasibility of its uses in tissue engineering and regenerative medicine, due to its excellent antioxidant activities and its abilities to enhance the self-renewal potency of stem cells. In this study, we demonstrate the influence of astaxanthin on the proliferation of adipose-derived mesenchymal stem cells in tissue-engineered constructs. The tissue engineered scaffolds were fabricated using photopolymerizable gelatin methacryloyl (GelMA) with different concentrations of astaxanthin. The effects of astaxanthin on cellular proliferation in two-dimensional environments were assessed using alamar blue assay and reverse transcription polymerase chain reaction (RT-PCR). Then, rheological properties, chemical structures and the water absorption of the fabricated astaxanthin-incorporated GelMA hydrogels were characterized using NMR analysis, rheological analysis and a swelling ratio test. Finally, the influence in three-dimensional environments of astaxanthin-incorporated GelMA hydrogels on the proliferative potentials of adipose-derived stem cells was assessed using alamar blue assay and the confocal imaging with Live/dead staining. The experimental results of the study indicate that an addition of astaxanthin promises to induce stem cell potency via proliferation, and that it can be a useful tool for a three-dimensional culture system and various tissue engineering applications. Full article
Show Figures

Figure 1

Open AccessReview
Biological Scaffolds for Abdominal Wall Repair: Future in Clinical Application?
Materials 2019, 12(15), 2375; https://doi.org/10.3390/ma12152375 - 25 Jul 2019
Abstract
Millions of abdominal wall repair procedures are performed each year for primary and incisional hernias both in the European Union and in the United States with extremely high costs. Synthetic meshes approved for augmenting abdominal wall repair provide adequate mechanical support but have [...] Read more.
Millions of abdominal wall repair procedures are performed each year for primary and incisional hernias both in the European Union and in the United States with extremely high costs. Synthetic meshes approved for augmenting abdominal wall repair provide adequate mechanical support but have significant drawbacks (seroma formation, adhesion to viscera, stiffness of abdominal wall, and infection). Biologic scaffolds (i.e., derived from naturally occurring materials) represent an alternative to synthetic surgical meshes and are less sensitive to infection. Among biologic scaffolds, extracellular matrix scaffolds promote stem/progenitor cell recruitment in models of tissue remodeling and, in the specific application of abdominal wall repair, have enough mechanical strength to support the repair. However, many concerns remain about the use of these scaffolds in the clinic due to their higher cost of production compared with synthetic meshes, despite having the same recurrence rate. The present review aims to highlight the pros and cons of using biologic scaffolds as surgical devices for abdominal wall repair and present possible improvements to widen their use in clinical practice. Full article
Show Figures

Figure 1

Open AccessArticle
Periorbital Reconstruction by “Periorbital Patch” Technique Using a Pericardium-Based Collagen Membrane and Titanium Mesh
Materials 2019, 12(15), 2343; https://doi.org/10.3390/ma12152343 - 24 Jul 2019
Abstract
Objective: Titanium mesh is a commonly used material for the reconstruction of orbital floor fractures. However, in some instances, a subsequent inflammatory reaction can occur that causes the adhesion of orbital tissue to the titanium mesh. The adhesion of the orbital soft tissue [...] Read more.
Objective: Titanium mesh is a commonly used material for the reconstruction of orbital floor fractures. However, in some instances, a subsequent inflammatory reaction can occur that causes the adhesion of orbital tissue to the titanium mesh. The adhesion of the orbital soft tissue to the mesh causes diplopia, lid rigidity and extraocular movements restriction. This study was performed to determine if the placement of a collagen membrane over a titanium mesh can prevent the adhesion of orbital soft tissue for an improved clinical outcome. Clinical considerations: A case study was performed investigating 106 patients undergoing a periorbital restoration. Seventy-two patients received a titanium mesh without a barrier membrane, 12 patients received a barrier membrane composed of autologous auricular cartilage to provide a barrier function and 22 patients received a pericardium collagen membrane and titanium mesh. Conclusions: Titanium has been shown to generate an intense inflammatory reaction in host tissues, which can cause fibrosis to adjacent structures. Fibrosis is an essential factor in the repair of fracture sites, however this can lead to adverse effects in the orbital socket. Fibrosis can cause cicatrization and lower eyelid retraction when induced along the lower orbital rim. An improved outcome can be achieved by using a barrier between the titanium mesh and the soft tissue, such as autogenous auricular cartilage, however, only patients treated with a resorbable collagen membrane to act as a soft tissue barricade during site regeneration, prevented the fibrosis reaction and related problems from occurring. Full article
Show Figures

Figure 1

Open AccessArticle
Engineering of Chitosan-Hydroxyapatite-Magnetite Hierarchical Scaffolds for Guided Bone Growth
Materials 2019, 12(14), 2321; https://doi.org/10.3390/ma12142321 - 20 Jul 2019
Abstract
Bioabsorbable materials have received increasing attention as innovative systems for the development of osteoconductive biomaterials for bone tissue engineering. In this paper, chitosan-based composites were synthesized adding hydroxyapatite and/or magnetite in a chitosan matrix by in situ precipitation technique. Composites were characterized by [...] Read more.
Bioabsorbable materials have received increasing attention as innovative systems for the development of osteoconductive biomaterials for bone tissue engineering. In this paper, chitosan-based composites were synthesized adding hydroxyapatite and/or magnetite in a chitosan matrix by in situ precipitation technique. Composites were characterized by optical and electron microscopy, thermogravimetric analyses (TGA), x-ray diffraction (XRD), and in vitro cell culture studies. Hydroxyapatite and magnetite were found to be homogeneously dispersed in the chitosan matrix and the composites showed superior biocompatibility and the ability to support cell attachment and proliferation; in particular, the chitosan/hydroxyapatite/magnetite composite (CS/HA/MGN) demonstrated superior bioactivity with respect to pure chitosan (CS) and to the chitosan/hydroxyapatite (CS/HA) scaffolds. Full article
Show Figures

Figure 1

Open AccessReview
Oral Bone Tissue Engineering: Advanced Biomaterials for Cell Adhesion, Proliferation and Differentiation
Materials 2019, 12(14), 2296; https://doi.org/10.3390/ma12142296 - 18 Jul 2019
Abstract
The advancements made in biomaterials have an important impact on oral tissue engineering, especially on the bone regeneration process. Currently known as the gold standard in bone regeneration, grafting procedures can sometimes be successfully replaced by a biomaterial scaffold with proper characteristics. Whether [...] Read more.
The advancements made in biomaterials have an important impact on oral tissue engineering, especially on the bone regeneration process. Currently known as the gold standard in bone regeneration, grafting procedures can sometimes be successfully replaced by a biomaterial scaffold with proper characteristics. Whether natural or synthetic polymers, biomaterials can serve as potential scaffolds with major influences on cell adhesion, proliferation and differentiation. Continuous research has enabled the development of scaffolds that can be specifically designed to replace the targeted tissue through changes in their surface characteristics and the addition of growth factors and biomolecules. The progress in tissue engineering is incontestable and research shows promising contributions to the further development of this field. The present review aims to outline the progress in oral tissue engineering, the advantages of biomaterial scaffolds, their direct implication in the osteogenic process and future research directions. Full article
Show Figures

Figure 1

Open AccessArticle
Acceleration of Osteogenesis via Stimulation of Angiogenesis by Combination with Scaffold and Connective Tissue Growth Factor
Materials 2019, 12(13), 2068; https://doi.org/10.3390/ma12132068 - 27 Jun 2019
Abstract
In bone regeneration, there are some important cellular biological processes, such as mineralization, cell organization, and differentiation. In particular, vascularization into regenerative tissues is a key step for the survival of cells and tissues. In this study, to fabricate biomimetic-engineered bone, including vascular [...] Read more.
In bone regeneration, there are some important cellular biological processes, such as mineralization, cell organization, and differentiation. In particular, vascularization into regenerative tissues is a key step for the survival of cells and tissues. In this study, to fabricate biomimetic-engineered bone, including vascular networks, we focused on connective tissue growth factor (CTGF), a multifunctional protein which could regulate the extracellular matrix remodeling. By combination with CTGF and hydroxyapatite (HAp) ceramics (2D) or apatite-fiber scaffold (AFS, 3D), we have fabricated bioactive materials. The CTGF-loaded HAp ceramics could enhance the cellular attachment through interaction with integrin and promote actin cytoskeletal reorganization. CTGF-loaded HAp also enhanced the differentiation of osteoblasts by integrin-mediated activation of the signaling pathway. Under co-culture conditions, both osteoblasts and endothelial cells in the CTGF-loaded AFS were stimulated by CTGF, and each cell could penetrate the central region of the scaffold in vitro and in vivo. Direct cell-cell interaction would also improve the functionality of cells in bone formation. These results suggest that coupling between effective optimized scaffold and CTGF with multifunction could provide better mimicking natural bone by stimulation of angiogenesis. Full article
Show Figures

Figure 1

Open AccessArticle
Euler’s Elastica-Based Biomechanics of the Papillary Muscle Approximation in Ischemic Mitral Valve Regurgitation: A Simple 2D Analytical Model
Materials 2019, 12(9), 1518; https://doi.org/10.3390/ma12091518 - 09 May 2019
Abstract
Ischemic mitral regurgitation (IMR) occurs as an adverse consequence of left ventricle remodeling post-myocardial infarction. A change in mitral valve configuration with an imbalance between closing and tethering forces underlie this pathological condition. These abnormalities lead to impaired leaflet coaptation and a variable [...] Read more.
Ischemic mitral regurgitation (IMR) occurs as an adverse consequence of left ventricle remodeling post-myocardial infarction. A change in mitral valve configuration with an imbalance between closing and tethering forces underlie this pathological condition. These abnormalities lead to impaired leaflet coaptation and a variable degree of mitral regurgitation, which can in turn influence the ventricular filling status, the heart rhythm and the afterload regardless of the residual ischemic insult. The IMR correction can be pursued through under-sizing mitral annuloplasty and papillary muscle approximation to restore the mitral valve and left ventricle physiological geometry to, consequently, achieve normalization of the engaged physical forces. Because the structures involved undergo extremely large deformations, a biomechanics model based on the Euler’s Elastica –the mitral leaflet– interlaced with nonlinear chordae tendineae anchored on papillary muscles has been constructed to elucidate the interactions between closing and tethering forces. The model takes into account the actual updated geometrical and mechanical features of the valvular and subvalvular apparatuses in physiological and IMR conditions, as well as in case of papillary muscle approximation, finally furnishing ad hoc geometry-based mathematical relations that could be utilised to support—and optimize—the relevant choices in cardiac surgery. Full article
Show Figures

Figure 1

Open AccessReview
Decellularized Extracellular Matrix for Cancer Research
Materials 2019, 12(8), 1311; https://doi.org/10.3390/ma12081311 - 22 Apr 2019
Abstract
Genetic mutation and alterations of intracellular signaling have been focused on to understand the mechanisms of oncogenesis and cancer progression. Currently, it is pointed out to consider cancer as tissues. The extracellular microenvironment, including the extracellular matrix (ECM), is important for the regulation [...] Read more.
Genetic mutation and alterations of intracellular signaling have been focused on to understand the mechanisms of oncogenesis and cancer progression. Currently, it is pointed out to consider cancer as tissues. The extracellular microenvironment, including the extracellular matrix (ECM), is important for the regulation of cancer cell behavior. To comprehensively investigate ECM roles in the regulation of cancer cell behavior, decellularized ECM (dECM) is now used as an in vitro ECM model. In this review, I classify dECM with respect to its sources and summarize the preparation and characterization methods for dECM. Additionally, the examples of cancer research using the dECM were introduced. Finally, future perspectives of cancer studies with dECM are described in the conclusions. Full article
Show Figures

Figure 1

Open AccessArticle
Temporary Wettability Tuning of PCL/PDMS Micro Pattern Using the Plasma Treatments
Materials 2019, 12(4), 644; https://doi.org/10.3390/ma12040644 - 20 Feb 2019
Abstract
Surface wettability plays an important role in determining the function of a wound dressing. Dressings with hydrophobic surfaces are suitable for bacterial adsorption, however, a hydrophilic surface is needed to improve cell attachment for most anchorage-dependent cell types. Furthermore, the hydrophobicity/hydrophilicity of the [...] Read more.
Surface wettability plays an important role in determining the function of a wound dressing. Dressings with hydrophobic surfaces are suitable for bacterial adsorption, however, a hydrophilic surface is needed to improve cell attachment for most anchorage-dependent cell types. Furthermore, the hydrophobicity/hydrophilicity of the surface can be used to direct cellular processes such as cell initial attachment, adhesion, and migration during wound healing. Thus, a surface with an ability to switch their surface wettability improves the practicality of the dressing. In this study, we propose a temporary surface wettability tuning for surface patterning utilizing plasma treatment. Polycaprolactone (PCL) and polydimethylsiloxane (PDMS) surfaces were treated with tetrafluoromethane (CF4), sulphur hexafluoride (SF6), and oxygen (O2) plasma, and the effects on the surface wettability, roughness, and chemical composition were investigated. Based on the contact angle measurement, CF4 plasma altered surface wettability of PCL and PDMS films to hydrophobic and hydrophilic, respectively. After CF4 treatment, better attachment of primary mouse embryonic fibroblast cell (3T3) was observed on the treated PDMS surface. Embedding PCL into PDMS generated a hydrophobic-hydrophilic pattern mixture surface, which offers great potential in the tissue engineering field such as cell patterning and guidance. Full article
Show Figures

Figure 1

Open AccessArticle
Biocompatibility Characteristics of Titanium Coated with Multi Walled Carbon Nanotubes—Hydroxyapatite Nanocomposites
Materials 2019, 12(2), 224; https://doi.org/10.3390/ma12020224 - 10 Jan 2019
Abstract
Multi walled carbon nanotubes-hydroxyapatite (MWCNTs-HA) with various contents of MWCNTs was synthesized using the sol-gel method. MWCNTs-HA composites were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). HA particles were generated on the surface of MWCNT. Produced MWCNTs-HA nanocomposites were coated [...] Read more.
Multi walled carbon nanotubes-hydroxyapatite (MWCNTs-HA) with various contents of MWCNTs was synthesized using the sol-gel method. MWCNTs-HA composites were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). HA particles were generated on the surface of MWCNT. Produced MWCNTs-HA nanocomposites were coated on pure titanium (PT). Characteristic of the titanium coated MWCNTs-HA was evaluated by field-emission scanning electron microscopy (FE-SEM) and XRD. The results show that the titanium surface was covered with MWCNTs-HA nanoparticles and MWCNTs help form the crystalized hydroxyapatite. Furthermore, the MWCNTs-HA coated titanium was investigated for in vitro cellular responses. Cell proliferation and differentiation were improved on the surface of MWCNT-HA coated titanium. Full article
Show Figures

Figure 1

2018

Jump to: 2019

Open AccessArticle
What’s Happening on the Other Side? Revealing Nano-Meter Scale Features of Mammalian Cells on Engineered Textured Tantalum Surfaces
Materials 2019, 12(1), 114; https://doi.org/10.3390/ma12010114 - 31 Dec 2018
Abstract
Advanced engineered surfaces can be used to direct cell behavior. These behaviors are typically characterized using either optical, atomic force, confocal, or electron microscopy; however, most microscopic techniques are generally restricted to observing what’s happening on the “top” side or even the interior [...] Read more.
Advanced engineered surfaces can be used to direct cell behavior. These behaviors are typically characterized using either optical, atomic force, confocal, or electron microscopy; however, most microscopic techniques are generally restricted to observing what’s happening on the “top” side or even the interior of the cell. Our group has focused on engineered surfaces typically reserved for microelectronics as potential surfaces to control cell behavior. These devices allow the exploration of novel substrates including titanium, tungsten, and tantalum intermixed with silicon oxide. Furthermore, these devices allow the exploration of the intricate patterning of surface materials and surface geometries i.e., trenches. Here we present two important advancements in our research: (1) the ability to split a fixed cell through the nucleus using an inexpensive three-point bend micro-cleaving technique and image 3D nanometer scale cellular components using high-resolution scanning electron microscopy; and (2) the observation of nanometer projections from the underbelly of a cell as it sits on top of patterned trenches on our devices. This application of a 3-point cleaving technique to visualize the underbelly of the cell is allowing a new understanding of how cells descend into surface cavities and is providing a new insight on cell migration mechanisms. Full article
Show Figures

Figure 1

Open AccessArticle
Photothermal Ablation of Cancer Cells by Albumin-Modified Gold Nanorods and Activation of Dendritic Cells
Materials 2019, 12(1), 31; https://doi.org/10.3390/ma12010031 - 21 Dec 2018
Cited by 3
Abstract
Nanoparticle-mediated photothermal therapy has been widely studied for cancer treatment. It is important to disclose how photothermally ablated tumor cells trigger immune responses. In this study, bovine serum albumin (BSA)-coated gold nanorods (BSA-coated AuNRs) were prepared and used for photothermal ablation of breast [...] Read more.
Nanoparticle-mediated photothermal therapy has been widely studied for cancer treatment. It is important to disclose how photothermally ablated tumor cells trigger immune responses. In this study, bovine serum albumin (BSA)-coated gold nanorods (BSA-coated AuNRs) were prepared and used for photothermal ablation of breast tumor cells. The BSA-coated AuNRs showed high photothermal conversion efficiency and good photothermal ablation effect towards tumor cells. The ablated tumor cells were co-cultured with immature dendritic cells (DCs) through a direct cell contacting model and diffusion model to confirm the stimulatory effects of cell–cell interaction and soluble factors released from ablated tumor cells. The results indicated that photothermally ablated tumor cells induced immune-stimulatory responses of DCs through both cell–cell interaction and soluble factors. The results should be useful for synergistic photothermal-immunotherapy of primary and metastatic cancer. Full article
Show Figures

Figure 1

Open AccessArticle
Encapsulation of Rat Bone Marrow Derived Mesenchymal Stem Cells in Alginate Dialdehyde/Gelatin Microbeads with and without Nanoscaled Bioactive Glass for In Vivo Bone Tissue Engineering
Materials 2018, 11(10), 1880; https://doi.org/10.3390/ma11101880 - 01 Oct 2018
Cited by 5
Abstract
Alginate dialdehyde (ADA), gelatin, and nano-scaled bioactive glass (nBG) particles are being currently investigated for their potential use as three-dimensional scaffolding materials for bone tissue engineering. ADA and gelatin provide a three-dimensional scaffold with properties supporting cell adhesion and proliferation. Combined with nanocristalline [...] Read more.
Alginate dialdehyde (ADA), gelatin, and nano-scaled bioactive glass (nBG) particles are being currently investigated for their potential use as three-dimensional scaffolding materials for bone tissue engineering. ADA and gelatin provide a three-dimensional scaffold with properties supporting cell adhesion and proliferation. Combined with nanocristalline BG, this composition closely mimics the mineral phase of bone. In the present study, rat bone marrow derived mesenchymal stem cells (MSCs), commonly used as an osteogenic cell source, were evaluated after encapsulation into ADA-gelatin hydrogel with and without nBG. High cell survival was found in vitro for up to 28 days with or without addition of nBG assessed by calcein staining, proving the cell-friendly encapsulation process. After subcutaneous implantation into rats, survival was assessed by DAPI/TUNEL fluorescence staining. Hematoxylin-eosin staining and immunohistochemical staining for the macrophage marker ED1 (CD68) and the endothelial cell marker lectin were used to evaluate immune reaction and vascularization. After in vivo implantation, high cell survival was found after 1 week, with a notable decrease after 4 weeks. Immune reaction was very mild, proving the biocompatibility of the material. Angiogenesis in implanted constructs was significantly improved by cell encapsulation, compared to cell-free beads, as the implanted MSCs were able to attract endothelial cells. Constructs with nBG showed higher numbers of vital MSCs and lectin positive endothelial cells, thus showing a higher degree of angiogenesis, although this difference was not significant. These results support the use of ADA/gelatin/nBG as a scaffold and of MSCs as a source of osteogenic cells for bone tissue engineering. Future studies should however improve long term cell survival and focus on differentiation potential of encapsulated cells in vivo. Full article
Show Figures

Figure 1

Open AccessArticle
Biological Compatibility of a Polylactic Acid Composite Reinforced with Natural Chitosan Obtained from Shrimp Waste
Materials 2018, 11(8), 1465; https://doi.org/10.3390/ma11081465 - 18 Aug 2018
Cited by 4
Abstract
The aim of this work is to evaluate the effect of chitosan content (1, 3 and 5 wt %) dispersed in polylactic acid (PLA) on the structure and properties of composites. Also, the hydrolytic degradation, and the cell viability and adhesion of human [...] Read more.
The aim of this work is to evaluate the effect of chitosan content (1, 3 and 5 wt %) dispersed in polylactic acid (PLA) on the structure and properties of composites. Also, the hydrolytic degradation, and the cell viability and adhesion of human MG-63 osteoblasts are analyzed to determine the composites’ suitability for use in tissue engineering. For the manufacture of the materials, natural chitosan was extracted chemically from shrimp exoskeleton. The composites were fabricated by extrusion, because it is a low-cost process, it is reproducible, and it does not compromise the biocompatibility of the materials. FT-IR and XRD show that the chitosan does not change the polymer structure, and interactions between the composite components are discarded. In vitro degradation tests show that the composites do not induce significant pH changes in phosphate buffer solution due to their low susceptibility to hydrolytic degradation. The adhesion and morphological characteristics of the osteoblasts are evaluated using confocal microscopy and scanning electron microscopy. The cell viability is determined by the MTT assay. Osteoblasts adhesion is observed on the surface of PLA and composites. A higher amount of chitosan, higher number of cells with osteoblastic morphology, and mineralized nodules are observed on the composite surface. The highest metabolic activity is evidenced at 21 days. The results suggest that the Polylactic acid/chitosan composites are potentially suitable for use as a biomaterial. Full article
Show Figures

Figure 1

Open AccessArticle
Pattern-Dependent Mammalian Cell (Vero) Morphology on Tantalum/Silicon Oxide 3D Nanocomposites
Materials 2018, 11(8), 1306; https://doi.org/10.3390/ma11081306 - 28 Jul 2018
Cited by 3
Abstract
The primary goal of this work was to investigate the resulting morphology of a mammalian cell deposited on three-dimensional nanocomposites constructed of tantalum and silicon oxide. Vero cells were used as a model. The nanocomposite materials contained comb structures with equal-width trenches and [...] Read more.
The primary goal of this work was to investigate the resulting morphology of a mammalian cell deposited on three-dimensional nanocomposites constructed of tantalum and silicon oxide. Vero cells were used as a model. The nanocomposite materials contained comb structures with equal-width trenches and lines. High-resolution scanning electron microscopy and fluorescence microscopy were used to image the alignment and elongation of cells. Cells were sensitive to the trench widths, and their observed behavior could be separated into three different regimes corresponding to different spreading mechanism. Cells on fine structures (trench widths of 0.21 to 0.5 μm) formed bridges across trench openings. On larger trenches (from 1 to 10 μm), cells formed a conformal layer matching the surface topographical features. When the trenches were larger than 10 μm, the majority of cells spread like those on blanket tantalum films; however, a significant proportion adhered to the trench sidewalls or bottom corner junctions. Pseudopodia extending from the bulk of the cell were readily observed in this work and a minimum effective diameter of ~50 nm was determined for stable adhesion to a tantalum surface. This sized structure is consistent with the ability of pseudopodia to accommodate ~4–6 integrin molecules. Full article
Show Figures

Figure 1

Open AccessArticle
Porous Silk Fibroin Microspheres Sustainably Releasing Bioactive Basic Fibroblast Growth Factor
Materials 2018, 11(8), 1280; https://doi.org/10.3390/ma11081280 - 25 Jul 2018
Cited by 3
Abstract
Basic fibroblast growth factor (bFGF) plays a significant role in stimulating cell proliferation. It remains a challenge in the field of biomaterials to develop a carrier with the capacity of continuously releasing bioactive bFGF. In this study, porous bFGF-loaded silk fibroin (SF) microspheres, [...] Read more.
Basic fibroblast growth factor (bFGF) plays a significant role in stimulating cell proliferation. It remains a challenge in the field of biomaterials to develop a carrier with the capacity of continuously releasing bioactive bFGF. In this study, porous bFGF-loaded silk fibroin (SF) microspheres, with inside-out channels, were fabricated by high-voltage electrostatic differentiation, and followed by lyophilization. The embedded bFGF exhibited a slow release mode for over 13 days without suffering burst release. SEM observations showed that incubated L929 cells could fully spread and produce collagen-like fibrous matrix on the surface of SF microspheres. CLSM observations and the results of cell viability assay indicated that bFGF-loaded microspheres could significantly promote cell proliferation during five to nine days of culture, compared to bFGF-unloaded microspheres. This reveals that the bFGF released from SF microspheres retained obvious bioactivity to stimulate cell growth. Such microspheres sustainably releasing bioactive bFGF might be applied to massive cell culture and tissue engineering as a matrix directly, or after being combined with three-dimensional scaffolds. Full article
Show Figures

Figure 1

Open AccessArticle
The Preservation of Bone Cell Viability in a Human Femoral Head through a Perfusion Bioreactor
Materials 2018, 11(7), 1070; https://doi.org/10.3390/ma11071070 - 25 Jun 2018
Cited by 1
Abstract
Current methods for drug development and discovery involve pre-clinical analyses that are extremely expensive and time consuming. Animal models are not the best precedent to use, when comparing to human models as they are not synonymous with the human response, thus, alternative methods [...] Read more.
Current methods for drug development and discovery involve pre-clinical analyses that are extremely expensive and time consuming. Animal models are not the best precedent to use, when comparing to human models as they are not synonymous with the human response, thus, alternative methods for drug development are needed. One of which could be the use of an ex vivo human organ where drugs could be tested and the effects of those drugs could be observed. Finding a viable human organ to use in these preliminary ex vivo studies is difficult due to the availability, cost, and viability. Bone tissue and marrow contain a plethora of both bone and stem cells, however, these cells need constant perfusion to be viable over a longer time range. Here we maintain bone cell sustainability in an ex vivo model, through the use of human femoral heads in a novel bioreactor. This bioreactor was designed to directly perfuse cell culture media (DMEM) through the vasculature of a femoral head, providing ideal nutrients and conditions required for maintaining organ viability. We show, for the first time, that cells within a femoral head can stay alive up to 12 h. Further development could be used to determine the effects of drugs on a human organ system and could aid in the understanding of the progression of bone diseases and pathologies. Full article
Show Figures

Figure 1

Planned Papers

The below list represents only planned manuscripts. Some of these manuscripts have not been received by the Editorial Office yet. Papers submitted to MDPI journals are subject to peer-review.

Title: Promotion of osteogenesis by combination of three-dimensional scaffold and connective tissue growth factor

Abstract: In bone tissue engineering, implanted scaffolds should provide the biological cellular requirements, such as mineralization, cell organization and differentiation. Especially, vascularization within engineered tissues is a key process to improve their survival in vitro and in vivo. In the present study, to construct an active blood vessel network, we have investigated the relation between osteoblasts and endothelial cells. In addition, to develop the vascularized bone scaffolds, we focused on connective tissue growth factor (CTGF), a multifunctional growth factor. Combination of apatite-fiber scaffold and CTGF could promote the adhesion, migration, and proliferation of osteoblasts, together with stimulation of angiogenesis.

Author’s name: Michiyo Honda, Ryo Hariya and Mamoru Aizawa

 

Abstract: In recent years there has been an increasing trend of recall of drugs and most of these recalls have been due to unforeseen liver toxicity. This could be attributed to the fact there are few reliable in vitro liver models that can give reliable results in drug testing that can be translated to the clinic successfully. To meet this need, there are now numerous three dimensionally cultured liver organoids that are being employed for drug testing and disease modeling. In this study, we have tried to improve on such organoids by creating a simple and well-defined extracellular matrix hyaluronic acid and collagen hydrogel biofunctionalized with fibronectin, which improves physiologic and metabolic activities of these 3D liver constructs. First, we provide basic characterization of this hydrogel through standard material science assessments. Second, we verified biocompatibility using a comparison to a commercially available biomaterial with several common cell lines. Lastly, we demonstrate the utility of the biofunctionalized hydrogel in 3D primary human hepatocyte constructs – or liver “organoids”. The liver organoids constructed with biofunctionalized matrix were then tested for toxicity response with recalled hepatotoxic drugs and environmental toxin wherein we observed dose dependent response. We also show that these liver organoids are capable of being rescued with and reviving their function after a drug insult thus demonstrating clinical relevance and translational potential of this platform.
Back to TopTop