materials-logo

Journal Browser

Journal Browser

Trends and Prospects in Surface Engineering

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Materials Chemistry".

Deadline for manuscript submissions: closed (15 June 2022) | Viewed by 21079

Special Issue Editor


E-Mail Website
Guest Editor
Department of Mechanical Engineering, Koszalin University of Technology, 75-453 Koszalin, Poland
Interests: plasma electrolytic oxidation (PEO); micro arc oxidation (MAO); electropolishing (EP); magnetoelectropolishing (MEP); biomaterials (titanium, tantalum, niobium, and their alloys); surface characterization; XPS, GDOES, SEM, EDS; corrosion studies; 2D and 3D roughness measurements
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Surface engineering is an interdisciplinary topic which contains many branches of science related to materials science, chemistry, and physics. At present, multidisciplinary teams are working on new materials and novel coatings with optimized mechanical, electrical, electrochemical, and antibacterial properties. Surface modification methods such as electropolishing (EP, MEP); plasma electrolytic oxidation (PEO, also known as micro arc oxidation—MAO); electrophoretic deposition (EPD) and ion implantation (IM); chemical and physical vapor deposition (CVD, PVD); anodic oxidation; carburization, nitrocarburization, and passivation; laser treatments and hydrothermal treatments; abrasive treatments and shot peening; as well as thermoreactive deposition and sol–gel coatings are still under the development in many laboratories all over the world. In addition, additive manufacturing technologies open up new possibilities in the production of machine elements and at the same time introduce new challenges related to surface treatment, creating new trends in the field broadly understood as surface engineering.

I would like to invite all researchers interested in widely understood surface engineering to present their results related to both experimental and theoretical studies.

Prof. Dr. Krzysztof Rokosz
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • surface functionalization and modification
  • electropolishing (EP, MEP) and plasma electrolytic oxidation (micro arc oxidation)
  • electrophoretic deposition (EPD) and ion implantation (IM)
  • chemical or physical vapor deposition (CVD, PVD)
  • anodic oxidation and passivation
  • laser treatments, hydrothermal treatments
  • sol–gel coatings and thermoreactive deposition
  • biomaterials and self-assembling structures
  • abrasive treatments and shot peening
  • additive manufacturing

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research, Review

3 pages, 190 KiB  
Editorial
Trends and Prospects in Surface Engineering
by Krzysztof Rokosz
Materials 2022, 15(14), 4839; https://doi.org/10.3390/ma15144839 - 12 Jul 2022
Cited by 1 | Viewed by 994
Abstract
Surface engineering is an interdisciplinary topic thatcontains many branches of science related to materials science, chemistry, and physics [...] Full article
(This article belongs to the Special Issue Trends and Prospects in Surface Engineering)

Research

Jump to: Editorial, Review

21 pages, 7435 KiB  
Article
Optimisation of Mechanical Properties of Gradient Zr–C Coatings
by Łukasz Szparaga, Przemysław Bartosik, Adam Gilewicz, Katarzyna Mydłowska and Jerzy Ratajski
Materials 2021, 14(2), 296; https://doi.org/10.3390/ma14020296 - 8 Jan 2021
Cited by 4 | Viewed by 3376
Abstract
One of the key components of the designing procedure of a structure of hard anti-wear coatings deposited via Physical Vapour Deposition (PVD) is the analysis of the stress and strain distributions in the substrate/coating systems, initiated during the deposition process and by external [...] Read more.
One of the key components of the designing procedure of a structure of hard anti-wear coatings deposited via Physical Vapour Deposition (PVD) is the analysis of the stress and strain distributions in the substrate/coating systems, initiated during the deposition process and by external mechanical loads. Knowledge of residual stress development is crucial due to their significant influence on the mechanical and tribological properties of such layer systems. The main goal of the work is to find the optimal functionally graded material (FGM) coating’s structure, composed of three functional layers: (1) adhesive layer, providing high adhesion of the coating to the substrate, (2) gradient load support and crack deflection layer, improving hardness and enhancing fracture toughness, (3) wear-resistant top layer, reducing wear. In the optimisation procedure of the coating’s structure, seven decision criteria basing on the state of residual stresses and strains in the substrate/coating system were proposed. Using finite element simulations and postulated criteria, the thickness and composition gradients of the transition layer in FGM coating were determined. In order to verify the proposed optimisation procedure, Zr-C coatings with different spatial distribution of carbon concentration were produced by the Reactive Magnetron Sputtering PVD (RMS PVD) method and their anti-wear properties were assessed by scratch test and ball-on-disc tribological test. Full article
(This article belongs to the Special Issue Trends and Prospects in Surface Engineering)
Show Figures

Figure 1

20 pages, 7480 KiB  
Article
Application of Ultraviolet Laser Working in Cold Ablation Conditions for Cutting Labels Used in Packaging in the Food Industry
by Łukasz Bohdal, Leon Kukiełka, Radosław Patyk, Rafał Gryglicki and Piotr Kasprzak
Materials 2020, 13(22), 5245; https://doi.org/10.3390/ma13225245 - 20 Nov 2020
Cited by 2 | Viewed by 1877
Abstract
This work presents experimental studies aiming at the development of new technology and guidelines for shaping labels from polypropylene multilayer foil using an ultraviolet (UV) laser cutting operation. Currently on production lines, the shaping of labels is undertaken by mechanical cutting or laser [...] Read more.
This work presents experimental studies aiming at the development of new technology and guidelines for shaping labels from polypropylene multilayer foil using an ultraviolet (UV) laser cutting operation. Currently on production lines, the shaping of labels is undertaken by mechanical cutting or laser cutting, taking into account the phenomenon of hot ablation. These technologies cause many problems such as burr formation on labels sheared edges, rapid tool wear, or heat-affected zone (HAZ) formation. The experimental tests were carried out on a specially designed laser system for cutting polypropylene foil using the phenomenon of cold ablation. Parametric analyses were conducted for several foil thicknesses t = 50, 60, 70 and 80 µm. The process parameters were optimized in terms of high efficiency and high labels-cut surface quality. A new criterion has been developed for assessing the quality of UV laser cutting of polypropylene foils. The results indicate a significant effect of the cutting speed and laser frequency on the width of the degraded zone on the sheet cut edge. As a result of a developed optimization task and reverse task solution it is possible to cut labels at high speeds (v = 1.5 m/s) while maintaining a high quality of cut edge free of carbon, delamination and color changes. A degraded zone does not exceed in the examined cases s ≤ 0.17 mm. Full article
(This article belongs to the Special Issue Trends and Prospects in Surface Engineering)
Show Figures

Figure 1

18 pages, 7015 KiB  
Article
Metal Ions Supported Porous Coatings by Using AC Plasma Electrolytic Oxidation Processing
by Krzysztof Rokosz, Tadeusz Hryniewicz, Steinar Raaen, Sofia Gaiaschi, Patrick Chapon, Dalibor Matýsek, Kornel Pietrzak, Monika Szymańska and Łukasz Dudek
Materials 2020, 13(17), 3838; https://doi.org/10.3390/ma13173838 - 31 Aug 2020
Cited by 6 | Viewed by 2335
Abstract
Coatings enriched with zinc and copper as well as calcium or magnesium, fabricated on titanium substrate by Plasma Electrolytic Oxidation (PEO) under AC conditions (two cathodic voltages, i.e., −35 or −135 V, and anodic voltage of +400 V), were investigated. In all experiments, [...] Read more.
Coatings enriched with zinc and copper as well as calcium or magnesium, fabricated on titanium substrate by Plasma Electrolytic Oxidation (PEO) under AC conditions (two cathodic voltages, i.e., −35 or −135 V, and anodic voltage of +400 V), were investigated. In all experiments, the electrolytes were based on concentrated orthophosphoric acid (85 wt%) and zinc, copper, calcium and/or magnesium nitrates. It was found that the introduced calcium and magnesium were in the ranges 5.0–5.4 at% and 5.6–6.5 at%, respectively, while the zinc and copper amounts were in the range of 0.3–0.6 at%. Additionally, it was noted that the metals of the block S (Ca and Mg) could be incorporated into the structure about 13 times more than metals of the transition group (Zn and Cu). The incorporated metals (from the electrolyte) into the top-layer of PEO phosphate coatings were on their first (Cu+) or second (Cu2+, Ca2+ and Mg2+) oxidation states. The crystalline phases (TiO and Ti3O) were detected only in coatings fabricated at cathodic voltage of −135 V. It has also been pointed that fabricated porous calcium–phosphate coatings enriched with biocompatible magnesium as well as with antibacterial zinc and copper are dedicated mainly to medical applications. However, their use for other applications (e.g., catalysis and photocatalysis) after additional functionalizations is not excluded. Full article
(This article belongs to the Special Issue Trends and Prospects in Surface Engineering)
Show Figures

Figure 1

12 pages, 2983 KiB  
Article
Effect of Polishing on Electrochemical Behavior and Passive Layer Composition of Different Stainless Steels
by Krzysztof Rokosz, Grzegorz Solecki, Gregor Mori, Rainer Fluch, Marianne Kapp and Jouko Lahtinen
Materials 2020, 13(15), 3402; https://doi.org/10.3390/ma13153402 - 1 Aug 2020
Cited by 15 | Viewed by 2792
Abstract
In the present paper, the effect of different polishing methods (mechanical and electrochemical) on passive layer chemistry and the corrosion behavior of stainless steels is investigated. It was found that CrNiMo austenites have a substantially better corrosion behavior than CrMnN ones. The nickel [...] Read more.
In the present paper, the effect of different polishing methods (mechanical and electrochemical) on passive layer chemistry and the corrosion behavior of stainless steels is investigated. It was found that CrNiMo austenites have a substantially better corrosion behavior than CrMnN ones. The nickel is enriched underneath the passive layer, while manganese tends to be enriched in the passive layer. It was also noted that immersion of manganese into an electrolyte preferentially causes its dissolution. It was found that high amounts of chromium (27.4%), molybdenum (3.3%), nickel (29.4%), with the addition of manganese (2.8%) after mechanical grinding, generates a better corrosion resistance than after electrochemical polishing. This is most likely because of the introduction of phosphates and sulfates into its structure, which is known for steels with a high amount of manganese. For highly alloyed CrNiMo steels, which do not contain a high amount of manganese, the addition of phosphates and/or sulphates via the electropolishing process results in a decrease in pitting corrosion resistance, which is also observed for high manganese steels. Electropolished samples show detrimental corrosion properties when compared to mechanically polished samples. This is attributed to substantial amounts of sulfate and phosphate from the electropolishing electrolyte present in the surface of the passive layer. Full article
(This article belongs to the Special Issue Trends and Prospects in Surface Engineering)
Show Figures

Figure 1

19 pages, 7274 KiB  
Article
Phosphate Coatings Enriched with Copper on Titanium Substrate Fabricated Via DC-PEO Process
by Krzysztof Rokosz, Tadeusz Hryniewicz, Wojciech Kacalak, Katarzyna Tandecka, Steinar Raaen, Sofia Gaiaschi, Patrick Chapon, Winfried Malorny, Dalibor Matýsek, Kornel Pietrzak and Łukasz Dudek
Materials 2020, 13(6), 1295; https://doi.org/10.3390/ma13061295 - 13 Mar 2020
Cited by 8 | Viewed by 2542
Abstract
The present paper covers the possible ways to fabricate advanced porous coatings that are enriched in copper on a titanium substrate through Direct Current Plasma Electrolytic Oxidation (DC-PEO) with voltage control, in electrolytes made of concentrated orthophosphoric acid with the addition of copper(II) [...] Read more.
The present paper covers the possible ways to fabricate advanced porous coatings that are enriched in copper on a titanium substrate through Direct Current Plasma Electrolytic Oxidation (DC-PEO) with voltage control, in electrolytes made of concentrated orthophosphoric acid with the addition of copper(II) nitrate(V) trihydrate. In these studies, solutions containing from 0 to 650 g salt per 1 dm3 of acid and anodic voltages from 450 V up to 650 V were used. The obtained coatings featuring variable porosity could be best defined by the three-dimensional (3D) parameter Sz, which lies in the range 9.72 to 45.18 μm. The use of copper(II) nitrate(V) trihydrate in the electrolyte, resulted, for all cases, in the incorporation of the two oxidation forms, i.e., Cu+ and Cu2+ into the coatings. Detailed X-Ray Photoelectron Spectroscopy (XPS) studies layers allowed for stating that the percentage of copper in the surface layer of the obtained coatings was in the range of 0.24 at% to 2.59 at%. The X-Ray Diffraction (XRD) studies showed the presence of copper (α-Cu2P2O7, and Cu3(PO4)2) and titanium (TiO2-anatase, TiO3, TiP2O7, and Ti0.73O0.91) compounds in coatings. From Energy-Dispersive X-Ray Spectroscopy (EDS) and XPS studies, it was found that the Cu/P ratio increases with the increase of voltage and the amount of salt in the electrolyte. The depth profile analysis by Glow-Discharge Optical Emission Spectroscopy (GDOES) method showed that a three-layer model consisting of a top porous layer, a semi-porous layer, and a transient/barrier layer might describe the fabricated coatings. Full article
(This article belongs to the Special Issue Trends and Prospects in Surface Engineering)
Show Figures

Figure 1

13 pages, 4705 KiB  
Article
Porous Coatings Containing Copper and Phosphorus Obtained by Plasma Electrolytic Oxidation of Titanium
by Krzysztof Rokosz, Tadeusz Hryniewicz, Wojciech Kacalak, Katarzyna Tandecka, Steinar Raaen, Sofia Gaiaschi, Patrick Chapon, Winfried Malorny, Dalibor Matýsek, Kornel Pietrzak, Ewa Czerwińska, Anna Iwanek and Łukasz Dudek
Materials 2020, 13(4), 828; https://doi.org/10.3390/ma13040828 - 12 Feb 2020
Cited by 11 | Viewed by 2642
Abstract
To fabricate porous copper coatings on titanium, we used the process of plasma electrolytic oxidation (PEO) with voltage control. For all experiments, the three-phase step-up transformer with six-diode Graetz bridge was used. The voltage and the amount of salt used in the electrolyte [...] Read more.
To fabricate porous copper coatings on titanium, we used the process of plasma electrolytic oxidation (PEO) with voltage control. For all experiments, the three-phase step-up transformer with six-diode Graetz bridge was used. The voltage and the amount of salt used in the electrolyte were determined so as to obtain porous coatings. Within the framework of this study, the PEO process was carried out at a voltage of 450 VRMS in four electrolytes containing the salt as copper(II) nitrate(V) trihydrate. Moreover, we showed that the content of salt in the electrolyte needed to obtain a porous PEO coating was in the range 300–600 g/dm3. After exceeding this amount of salts in the electrolyte, some inclusions on the sample surface were observed. It is worth noting that this limitation of the amount of salts in the electrolyte was not connected with the maximum solubility of copper(II) nitrate(V) trihydrate in the concentrated (85%) orthophosphoric acid. To characterize the obtained coatings, numerous techniques were used. In this work, we used scanning electron microscopy (SEM) coupled with electron-dispersive X-ray spectroscopy (EDS), conducted surface analysis using confocal laser scanning microscopy (CLSM), and studied the surface layer chemical composition of the obtained coatings by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), glow discharge of optical emission spectroscopy (GDOES), and biological tests. It was found that the higher the concentration of Cu(NO3)2∙3H2O in the electrolyte, the higher the roughness of the coatings, which may be described by 3D roughness parameters, such as Sa (1.17–1.90 μm) and Sp (7.62–13.91 μm). The thicknesses of PEO coatings obtained in the electrolyte with 300–600 g/dm3 Cu(NO3) 2∙3H2O were in the range 7.8 to 10 μm. The Cu/P ratio of the whole volume of coating measured by EDS was in the range 0.05–0.12, while the range for the top layer (measured using XPS) was 0.17–0.24. The atomic concentration of copper (0.54–0.72 at%) resulted in antibacterial and fungicidal properties in the fabricated coatings, which can be dedicated to biocompatible applications. Full article
(This article belongs to the Special Issue Trends and Prospects in Surface Engineering)
Show Figures

Figure 1

Review

Jump to: Editorial, Research

23 pages, 870 KiB  
Review
Phosphate Porous Coatings Enriched with Selected Elements via PEO Treatment on Titanium and Its Alloys: A Review
by Krzysztof Rokosz, Tadeusz Hryniewicz and Łukasz Dudek
Materials 2020, 13(11), 2468; https://doi.org/10.3390/ma13112468 - 28 May 2020
Cited by 28 | Viewed by 3287
Abstract
This paper shows that the subject of porous coatings fabrication by Plasma Electrolytic Oxidation (PEO), known also as Micro Arc Oxidation (MAO), is still current, inter alia because metals and alloys, which can be treated by the PEO method, for example, titanium, niobium, [...] Read more.
This paper shows that the subject of porous coatings fabrication by Plasma Electrolytic Oxidation (PEO), known also as Micro Arc Oxidation (MAO), is still current, inter alia because metals and alloys, which can be treated by the PEO method, for example, titanium, niobium, tantalum and their alloys, are increasingly available for sale. On the international market, apart from scientific works/activity developed at universities, scientific research on the PEO coatings is also underway in companies such as Keronite (Great Britain), Magoxid-Coat (Germany), Mofratech (France), Machaon (Russia), as well as CeraFuse, Tagnite, Microplasmic (USA). In addition, it should be noted that the development of the space industry and implantology will force the production of trouble-free micro- and macro-machines with very high durability. Another aspect in favor of this technique is the rate of part treatment, which does not exceed several dozen minutes, and usually only lasts a few minutes. Another advantage is functionalization of fabricated surface through thermal or hydrothermal modification of fabricated coatings, or other methods (Physical vapor deposition (PVD), chemical vapor deposition (CVD), sol-gel), including also reoxidation by PEO treatment in another electrolyte. In the following chapters, coatings obtained both in aqueous solutions and electrolytes based on orthophosphoric acid will be presented; therein, dependent on the PEO treatment and the electrolyte used, they are characterized by different properties associated with their subsequent use. The possibilities for using coatings produced by means of plasma electrolytic oxidation are very wide, beginning from various types of catalysts, gas sensors, to biocompatible and antibacterial coatings, as well as hard wear coatings used in machine parts, among others, used in the aviation and aerospace industries. Full article
(This article belongs to the Special Issue Trends and Prospects in Surface Engineering)
Show Figures

Figure 1

Back to TopTop