Special Issue "Trends and Prospects in Surface Engineering"

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Materials Chemistry".

Deadline for manuscript submissions: 15 June 2021.

Special Issue Editor

Prof. Dr. Krzysztof Rokosz
Website
Guest Editor
Department of Mechanical Engineering, Koszalin University of Technology, 75-453 Koszalin, Poland
Interests: plasma electrolytic oxidation (PEO); micro arc oxidation (MAO); electropolishing (EP); magnetoelectropolishing (MEP); biomaterials (titanium, tantalum, niobium, and their alloys); surface characterization; XPS, GDOES, SEM, EDS; corrosion studies; 2D and 3D roughness measurements
Special Issues and Collections in MDPI journals

Special Issue Information

Dear Colleagues,

Surface engineering is an interdisciplinary topic which contains many branches of science related to materials science, chemistry, and physics. At present, multidisciplinary teams are working on new materials and novel coatings with optimized mechanical, electrical, electrochemical, and antibacterial properties. Surface modification methods such as electropolishing (EP, MEP); plasma electrolytic oxidation (PEO, also known as micro arc oxidation—MAO); electrophoretic deposition (EPD) and ion implantation (IM); chemical and physical vapor deposition (CVD, PVD); anodic oxidation; carburization, nitrocarburization, and passivation; laser treatments and hydrothermal treatments; abrasive treatments and shot peening; as well as thermoreactive deposition and sol–gel coatings are still under the development in many laboratories all over the world. In addition, additive manufacturing technologies open up new possibilities in the production of machine elements and at the same time introduce new challenges related to surface treatment, creating new trends in the field broadly understood as surface engineering.

I would like to invite all researchers interested in widely understood surface engineering to present their results related to both experimental and theoretical studies.

Prof. Dr. Krzysztof Rokosz
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • surface functionalization and modification
  • electropolishing (EP, MEP) and plasma electrolytic oxidation (micro arc oxidation)
  • electrophoretic deposition (EPD) and ion implantation (IM)
  • chemical or physical vapor deposition (CVD, PVD)
  • anodic oxidation and passivation
  • laser treatments, hydrothermal treatments
  • sol–gel coatings and thermoreactive deposition
  • biomaterials and self-assembling structures
  • abrasive treatments and shot peening
  • additive manufacturing

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Open AccessArticle
Phosphate Coatings Enriched with Copper on Titanium Substrate Fabricated Via DC-PEO Process
Materials 2020, 13(6), 1295; https://doi.org/10.3390/ma13061295 - 13 Mar 2020
Abstract
The present paper covers the possible ways to fabricate advanced porous coatings that are enriched in copper on a titanium substrate through Direct Current Plasma Electrolytic Oxidation (DC-PEO) with voltage control, in electrolytes made of concentrated orthophosphoric acid with the addition of copper(II) [...] Read more.
The present paper covers the possible ways to fabricate advanced porous coatings that are enriched in copper on a titanium substrate through Direct Current Plasma Electrolytic Oxidation (DC-PEO) with voltage control, in electrolytes made of concentrated orthophosphoric acid with the addition of copper(II) nitrate(V) trihydrate. In these studies, solutions containing from 0 to 650 g salt per 1 dm3 of acid and anodic voltages from 450 V up to 650 V were used. The obtained coatings featuring variable porosity could be best defined by the three-dimensional (3D) parameter Sz, which lies in the range 9.72 to 45.18 μm. The use of copper(II) nitrate(V) trihydrate in the electrolyte, resulted, for all cases, in the incorporation of the two oxidation forms, i.e., Cu+ and Cu2+ into the coatings. Detailed X-Ray Photoelectron Spectroscopy (XPS) studies layers allowed for stating that the percentage of copper in the surface layer of the obtained coatings was in the range of 0.24 at% to 2.59 at%. The X-Ray Diffraction (XRD) studies showed the presence of copper (α-Cu2P2O7, and Cu3(PO4)2) and titanium (TiO2-anatase, TiO3, TiP2O7, and Ti0.73O0.91) compounds in coatings. From Energy-Dispersive X-Ray Spectroscopy (EDS) and XPS studies, it was found that the Cu/P ratio increases with the increase of voltage and the amount of salt in the electrolyte. The depth profile analysis by Glow-Discharge Optical Emission Spectroscopy (GDOES) method showed that a three-layer model consisting of a top porous layer, a semi-porous layer, and a transient/barrier layer might describe the fabricated coatings. Full article
(This article belongs to the Special Issue Trends and Prospects in Surface Engineering)
Show Figures

Figure 1

Open AccessArticle
Porous Coatings Containing Copper and Phosphorus Obtained by Plasma Electrolytic Oxidation of Titanium
Materials 2020, 13(4), 828; https://doi.org/10.3390/ma13040828 - 12 Feb 2020
Abstract
To fabricate porous copper coatings on titanium, we used the process of plasma electrolytic oxidation (PEO) with voltage control. For all experiments, the three-phase step-up transformer with six-diode Graetz bridge was used. The voltage and the amount of salt used in the electrolyte [...] Read more.
To fabricate porous copper coatings on titanium, we used the process of plasma electrolytic oxidation (PEO) with voltage control. For all experiments, the three-phase step-up transformer with six-diode Graetz bridge was used. The voltage and the amount of salt used in the electrolyte were determined so as to obtain porous coatings. Within the framework of this study, the PEO process was carried out at a voltage of 450 VRMS in four electrolytes containing the salt as copper(II) nitrate(V) trihydrate. Moreover, we showed that the content of salt in the electrolyte needed to obtain a porous PEO coating was in the range 300–600 g/dm3. After exceeding this amount of salts in the electrolyte, some inclusions on the sample surface were observed. It is worth noting that this limitation of the amount of salts in the electrolyte was not connected with the maximum solubility of copper(II) nitrate(V) trihydrate in the concentrated (85%) orthophosphoric acid. To characterize the obtained coatings, numerous techniques were used. In this work, we used scanning electron microscopy (SEM) coupled with electron-dispersive X-ray spectroscopy (EDS), conducted surface analysis using confocal laser scanning microscopy (CLSM), and studied the surface layer chemical composition of the obtained coatings by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), glow discharge of optical emission spectroscopy (GDOES), and biological tests. It was found that the higher the concentration of Cu(NO3)2∙3H2O in the electrolyte, the higher the roughness of the coatings, which may be described by 3D roughness parameters, such as Sa (1.17–1.90 μm) and Sp (7.62–13.91 μm). The thicknesses of PEO coatings obtained in the electrolyte with 300–600 g/dm3 Cu(NO3) 2∙3H2O were in the range 7.8 to 10 μm. The Cu/P ratio of the whole volume of coating measured by EDS was in the range 0.05–0.12, while the range for the top layer (measured using XPS) was 0.17–0.24. The atomic concentration of copper (0.54–0.72 at%) resulted in antibacterial and fungicidal properties in the fabricated coatings, which can be dedicated to biocompatible applications. Full article
(This article belongs to the Special Issue Trends and Prospects in Surface Engineering)
Show Figures

Figure 1

Back to TopTop