Special Issue "First-Principle and Atomistic Modelling in Materials Science"

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Materials Simulation and Design".

Deadline for manuscript submissions: 31 December 2020.

Special Issue Editor

Dr. Matthias Posselt
Website1 Website2
Guest Editor
HZDR - Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
Interests: thermodynamics and kinetics of defects; irradiation-induced defect formation; formation and properties of nanoclusters embedded in solids; self-diffusion in amorphous Si and Ge layers and their solid-phase recrystallization

Special Issue Information

Dear Colleagues,

Theoretical calculations and computer simulations are very important methods to improve our understanding of atomic-level processes in materials and to extend our knowledge on their static, dynamic, kinetic, and thermodynamic properties. Furthermore, the response of the material to external pertubations, in particular mechanical or thermal load and irradiation, can be studied using such computational techniques. This Special Issue of Materials shall include articles dealing with applications of first-principle density functional theory (DFT) and atomistic modelling based on interatomic potentials (AM). Both techniques are widely used to investigate ground state properties, finite-temperature effects, and dynamic processes. Based on the fundamental data delivered by DFT or AM, Monte Carlo simulations are employed to study the thermodynamics and kinetics of the respective materials. The present issue shall also include publications in which such a combination of the different computational methods is presented and be focused on solid inorganic materials with a crystalline or amorphous structure. Short communications on recent results, original research articles, as well as reviews may be submitted. This issue provides the opportunity for a detailed explanation of new computational techniques and for the publication of results obtained by the application of known theoretical methods to nonconventional classes of materials.

Dr. Matthias Posselt

Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • density functional theory
  • atomistic modelling using interatomic potential
  • Monte Carlo simulations
  • static, dynamic, kinetic, and thermodynamic properties
  • material response to external pertubations

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Other

Open AccessArticle
First-Principles Study on Structural, Mechanical, Anisotropic, Electronic and Thermal Properties of III-Phosphides: XP (X = Al, Ga, or In) in the P6422 Phase
Materials 2020, 13(3), 686; https://doi.org/10.3390/ma13030686 - 04 Feb 2020
Abstract
The structural, mechanical, electronic, and thermal properties, as well as the stability and elastic anisotropy, of XP (X = Al, Ga, or In) in the P6422 phase were studied via density functional theory (DFT) in this work. P [...] Read more.
The structural, mechanical, electronic, and thermal properties, as well as the stability and elastic anisotropy, of XP (X = Al, Ga, or In) in the P6422 phase were studied via density functional theory (DFT) in this work. P6422-XP (X = Al, Ga, or In) are dynamically and thermodynamically stable via phonon spectra and enthalpy. At 0 GPa, P6422-XP (X = Al, Ga, or In) are more rigid than F 4 ¯ 3 m-XP (X = Al, Ga, or In), of which P6422-XP (X = Al or Ga) are brittle and P6422-InP is ductile. In the same plane (except for (001)-plane), P6422-AlP and P6422-InP exhibit the smallest and the largest anisotropy, respectively, and P6422-XP (X = Al, Ga, or In) is isotropic in the (001)-plane. In addition, Al, Ga, In, and P bonds bring different electrical properties: P6422-InP exhibits a direct band gap (0.42 eV) with potential application for an infrared detector, whereas P6422-XP (X = Al or Ga) exhibit indirect band gap (1.55 eV and 0.86 eV). At high temperature (approaching the melting point), the theoretical minimum thermal conductivities of P6422-XP (X = Al, Ga, or In) are AlP (1.338 W∙m−1∙K−1) > GaP (1.058 W∙m−1∙K−1) > InP (0.669 W∙m−1∙K−1), and are larger than those of F 4 ¯ 3 m-XP (X = Al, Ga, or In). Thus, P6422-XP (X = Al, Ga, or In) have high potential application at high temperature. Full article
(This article belongs to the Special Issue First-Principle and Atomistic Modelling in Materials Science)
Show Figures

Figure 1

Open AccessArticle
Relationship between the Behavior of Hydrogen and Hydrogen Bubble Nucleation in Vanadium
Materials 2020, 13(2), 322; https://doi.org/10.3390/ma13020322 - 10 Jan 2020
Abstract
Hydrogen plays a significant role in the microstructure evolution and macroscopic deformation of materials, causing swelling and surface blistering to reduce service life. In the present work, the atomistic mechanisms of hydrogen bubble nucleation in vanadium were studied by first-principles calculations. The interstitial [...] Read more.
Hydrogen plays a significant role in the microstructure evolution and macroscopic deformation of materials, causing swelling and surface blistering to reduce service life. In the present work, the atomistic mechanisms of hydrogen bubble nucleation in vanadium were studied by first-principles calculations. The interstitial hydrogen atoms cannot form significant bound states with other hydrogen atoms in bulk vanadium, which explains the absence of hydrogen self-clustering from the experiments. To find the possible origin of hydrogen bubble in vanadium, we explored the minimum sizes of a vacancy cluster in vanadium for the formation of hydrogen molecule. We show that a freestanding hydrogen molecule can form and remain relatively stable in the center of a 54-hydrogen atom saturated 27-vacancy cluster. Full article
(This article belongs to the Special Issue First-Principle and Atomistic Modelling in Materials Science)
Show Figures

Figure 1

Open AccessArticle
Influence of Mixed Valence on the Formation of Oxygen Vacancy in Cerium Oxides
Materials 2019, 12(24), 4041; https://doi.org/10.3390/ma12244041 - 05 Dec 2019
Abstract
Ceria is one of the most important functional rare-earth oxides with wide industrial applications. Its amazing oxygen storage/release capacity is attributed to cerium’s flexible valence conversion between 4+ and 3+. However, there still exists some debate on whether the valence conversion is due [...] Read more.
Ceria is one of the most important functional rare-earth oxides with wide industrial applications. Its amazing oxygen storage/release capacity is attributed to cerium’s flexible valence conversion between 4+ and 3+. However, there still exists some debate on whether the valence conversion is due to the Ce-4f electron localization-delocalization transition or the character of Ce–O covalent bonds. In this work, a mixed valence model was established and the formation energies of oxygen vacancies and electronic charges were obtained by density functional theory calculations. Our results show that the formation energy of oxygen vacancy is affected by the valence state of its neighboring Ce atom and two oxygen vacancies around a Ce4+ in CeO2 have a similar effect to a Ce3+. The electronic charge difference between Ce3+ and Ce4+ is only about 0.4e. Therefore, we argue that the valence conversion should be understood according to the adjustment of the ratio of covalent bond to ionic bond. We propose that the formation energy of oxygen vacancy be used as a descriptor to determine the valence state of Ce in cerium oxides. Full article
(This article belongs to the Special Issue First-Principle and Atomistic Modelling in Materials Science)
Show Figures

Figure 1

Other

Jump to: Research

Open AccessLetter
The Interfacial Characteristics of Graphene/Al4C3 in Graphene/AlSi10Mg Composites Prepared by Selective Laser Melting: First Principles and Experimental Results
Materials 2020, 13(3), 702; https://doi.org/10.3390/ma13030702 - 04 Feb 2020
Abstract
The Al4C3 phase was precipitated via a reaction of graphene (Gr) with Al during selective laser melting (SLM). The interfacial nature of the Gr (0001)/Al4C3 (0001) interface was determined using the first-principle calculation. The simulation results showed [...] Read more.
The Al4C3 phase was precipitated via a reaction of graphene (Gr) with Al during selective laser melting (SLM). The interfacial nature of the Gr (0001)/Al4C3 (0001) interface was determined using the first-principle calculation. The simulation results showed that the influence of the stacking site on the interfacial structure was limited and the Al-termination interface presented a more stable structure than the C-termination interface. The Al-termination-CH site interface had the largest work of adhesion (6.28 J/m2) and the smallest interfacial distance (2.02 Å) among the four interfacial structures. Mulliken bond population analysis showed that the bonding of the Al-termination interface was a mixture of covalent and ionic bonds and there was no chemical bonding in the C-termination interface. Full article
(This article belongs to the Special Issue First-Principle and Atomistic Modelling in Materials Science)
Show Figures

Figure 1

Planned Papers

The below list represents only planned manuscripts. Some of these manuscripts have not been received by the Editorial Office yet. Papers submitted to MDPI journals are subject to peer-review.

Title: Electronic Structure of Lanthanide-Doped Ceria with Pseudopotentials including F-Electrons
Authors: F. Umbri, A. Bosc, F. Menescardi, M. Scavini and Davide Ceresoli
Back to TopTop