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Abstract: The effect of halide composition on the structural, electronic, and optical properties of
CsPb(Br1−xClx)3 perovskite was investigated in this study. When the chloride (Cl) content of x was
increased, the unit cell volume decreased with a linear function. Theoretical X-ray diffraction analyses
showed that the peak (at 2θ = 30.4◦) shifts to a larger angle (at 2θ = 31.9◦) when the average fraction
of the incorporated Cl increased. The energy bandgap (Eg) was observed to increase with the increase
in Cl concentration. For x = 0.00, 0.25, 0.33, 0.50, 0.66, 0.75, and 1.00, the Eg values calculated using the
Perdew–Burke–Ernzerhof potential were between 1.53 and 1.93 eV, while those calculated using the
modified Becke−Johnson generalized gradient approximation (mBJ–GGA) potential were between
2.23 and 2.90 eV. The Eg calculated using the mBJ–GGA method best matched the experimental values
reported. The effective masses decreased with a concentration increase of Cl to 0.33 and then increased
with a further increase in the concentration of Cl. Calculated photoabsorption coefficients show a blue
shift of absorption at higher Cl content. The calculations indicate that CsPb(Br1−xClx)3 perovskite
could be used in optical and optoelectronic devices by partly replacing bromide with chloride.

Keywords: CsPb(Br1−xClx)3 perovskite; PBE–GGA and mBJ–GGA; structural properties; electronic
properties; optical properties

1. Introduction

Over the last decade, organic and inorganic perovskites have gained considerable attention in the
field of optoelectronics, and more recently in solar cells [1–8] and light-emitting devices [9–13], thanks to
the reduced costs [14], high quantum efficiency of photoluminescence [15], and extensively tunable
emission wavelengths of these materials [16–18]. Recently, inorganic mixed-halide CsPb(Br1−xClx)3

compositions were used for creating various nanophotonic components because they exhibit
electroluminescence in the green [12,19] to blue [20] optical ranges. CsPbBr3 exhibits orthorhombic
symmetry at temperatures below 88 ◦C. When the temperature increases, structural distortion occurs
and the structure of CsPbBr3 is converted to tetragonal (88 ◦C < T < 130 ◦C), and subsequently to
cubic at higher temperatures (T > 130 ◦C) [17,18,21–38]. In comparison, at temperatures below 42 ◦C,
CsPbCl3 exhibits orthorhombic symmetry. When temperature increases, structural distortion occurs
and the CsPbCl3 structure is converted to tetragonal (42 ◦C < T < 47 ◦C), and subsequently to cubic
at higher temperatures (T > 47 ◦C) [18,39]. The energy band gap (Eg) can be adjusted by adding

Materials 2020, 13, 4944; doi:10.3390/ma13214944 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
https://orcid.org/0000-0001-5126-4477
https://orcid.org/0000-0001-7304-8118
https://orcid.org/0000-0001-8958-8960
https://orcid.org/0000-0001-6420-7359
http://dx.doi.org/10.3390/ma13214944
http://www.mdpi.com/journal/materials
https://www.mdpi.com/1996-1944/13/21/4944?type=check_update&version=3


Materials 2020, 13, 4944 2 of 22

appropriate materials to the perovskite, which can be designed using theoretical simulations based on
density functional theory (DFT) [40]. Recent studies on CsPb(Br1−xClx)3 perovskite thin films, fabricated
by sequential deposition technique, revealed an orthorhombic lattice in the case of x = 0.1 and 0.2,
whereas for x = 0.4 and 0.6, a cubic phase was observed [41]. The electronic structure of CsPb(Br1−xClx)3

perovskites was studied theoretically and experimentally by Tatiana G. Liashenko et al. [18]. Cl ions,
which are the substitute for Br ions in the perovskite crystal lattice at room temperature, do not change its
orthorhombic symmetry [18]. Generally, theoretical investigations of electronic and optical properties
of organic-inorganic perovskites are often performed by first-principles calculations with the local
density approximation (LDA) [42] and Perdew–Burke–Ernzerhof generalized gradient approximation
(PBE–GGA) [43,44] using DFT because of their relatively cheap computational cost and reasonable
accuracy [45]. The LDA and PBE–GGA potentials failed to calculate the accurate Eg and optical
properties because the obtained Eg values were much smaller than the experiment values [43,44,46–48]
and other possible errors [45]. In addition, the theoretical lattice parameters calculated using PBE–GGA
overestimated the experimental lattice constants [45]. LDA potential usually underestimated the
lattice constants, which resulted in the underestimation of Eg [45]. To overcome these significant
problems of LDA and PBE–GGA potentials, the most accurate potential modified Becke−Johnson GGA
(mBJ–GGA) potential was used, which is much more accurate than all other semi-local potentials for
strongly correlated systems [49,50]. mBJ–GGA potential can be used for the calculation of Eg with
excellent agreement with experimental values thanks to its additional dependence on kinetic energy
density [49,50].

In this study, the effects of substituting Cl with Br on the structural, electronic, and optical
properties of mixed Br–Cl supercell 1 × 1 × 4 CsPb(Br1−xClx)3 (x = 0.00, 0.25, 0.33, 0.50, 0.66, 0.75,
and 1.00) are investigated using PBE–GGA and mBJ–GGA potentials. The calculated values were
compared to the previous experimental [51–56] and theoretical [27,33,57–68] results to verify the
validity of the DFT calculation. The effect of spin-orbital coupling (SOC) [57–60] was included in
the calculation because of the heavy lead (Pb) element. By increasing the Cl content x from 0.00
to 1.00, the lattice constants and Eg were calculated. In addition, for these mixed-halide perovskites,
the effective masses of charge carriers, the binding energy of the exciton, the absorption coefficients,
the optical conductivity, the dielectric constants, and the reflectivity were calculated in detail.

2. Computational Method

The full-potential linearized augmented plane wave method [61,62] based on DFT [63],
as implemented in the WIEN2k code [64], has been used in the calculation. The structural properties
for CsPb(Br1–xClx)3 (x = 0.00, 0.25, 0.33, 0.50, 0.66, 0.75, and 1.00) were performed using Wu and Cohen
(GGA–WC) potential [65]. For the electronic and optical properties, mBJ–GGA [66] and PBE–GGA
potentials were used [67]. The mBJ–GGA potential with the SOC effect was included in our DFT
calculation because of the heavy Pb element.

The RMT* kmax value was set at 9.0 (RMT is the smallest muffin-tin radius in the unit cell and kmax

is the maximum value of the reciprocal lattice vectors). The RMT values were set at 2.5 a.u for (Cs, Pb,
and Br) and 2.41 a.u for Cl in such a way that the muffin-tin spheres do not overlap. To ensure the
accuracy of our calculations, we considered Gmax = 12 and lmax = 10. The irreducible Brillouin zone
(IBZ) was produced using 500 k-points (12 × 12 × 3 mesh grids) and the self-consistent convergence of
total energy was set at 10−4 Ry.

3. Results

3.1. Structural Properties

CsPbBr3 and CsPbCl3 have cubic structures with space group Pm3m (no. 221); the unit cell
contains one formula unit. To simulate CsPb(Br1−xClx)3, a tetragonal 1 × 1 × 4 supercell with 20 atoms
was used. For x = 0.00, 0.25, 0.33, 0.50, 0.66, 0.75, and 1.00, a supercell with 0, 3, 4, 6, 8, 9, and 12
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atoms of bromide was substituted with chloride atoms, respectively. See the Supplementary Materials,
Tables S1–S7, for more details.

Figure 1 shows the crystal structure of 1 × 1 × 4 supercell CsPb(Br1−xClx)3 formed by cubic
CsPbBr3 and CsPbCl3.
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Figure 1. Atomic structures of CsPb(Br1−xClx)3, with x = 0.00, 0.25, 0.33, 0.50, 0.66, 0.75, and 1.00 for
different Cl content (x).

The WC–GGA potential was determined by evaluating the ground state properties.
These properties include the lattice constant a, bulk modulus B, and its pressure derivative B′.
Structural optimization was performed by minimizing total energy with respect to cell volume,
and the results of total energy versus unit-cell volume were fitted with Murnaghan’s state-of-the-art
equation [68]. The total energy versus volume graph is shown in Figure 2. The results of a, B, and B′ are
shown in Table 1 with the corresponding theoretical and experimental data available in the literature.
As shown in Table 1, the lattice constants of the CsPbBr3 and CsPbCl3 structures are in good agreement
with recent theoretical and experimental results, thereby proving that our computational parameters
are valid.
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Figure 2. Calculated total energy versus volume of (a) CsPbBr3 and (b) CsPbCl3 via (Wu and Cohen
generalized gradient approximation (WC–GGA)) potential.

Moreover, excellent agreement was observed between our obtained value of the lattice parameter
for CsPbBr3 (5.8859 Å) and its experimental value of 5.85 (Å) obtained in [69]. Moreover, the value of
the lattice parameter for CsPbCl3 was 5.6379 Å, which was in excellent agreement with the experimental
value of 5.605 Å obtained in [70]. Theoretical X-ray diffraction (XRD) patterns were obtained using
the visualization for electronic and structural analysis (VESTA 3, Ibaraki, Japan) [71] (see Figure 3).
The diffraction peaks of CsPbBr3 moved toward CsPbCl3 when x changed from 0.00 to 1.00. As shown
in Table 1, when the Cl content x increases from 0.00 to 1.00, the volume of the unit-cell decreases in
proportion x with the function of V(x) = 815.29916 – 112.58513x (Å)3, as shown in Figure 4.

Table 1. Calculated structural parameters; lattice constants a, b, and c (Å); unit cell volume V (Å)3;
bulk modulus B (GPa); and its derivative B′ of CsPb(Br1−xClx)3 perovskite by Wu and Cohen
generalized gradient approximation (WC–GGA) potential. mBJ, modified Becke−Johnson;
LDA, local density approximation; PBE, Perdew–Burke–Ernzerhof.

CsPb(Br1−xClx)3
Present Work Other Calculations (Exp.)

a (Å) V (Å)3 B (GPa) B′ a (Å) B (GPa) B′

CsPbBr3 a = 5.874 810.703 20.7379 4.881

5.84 (WC–GGA) [72]
5.86 (TB–mBJ) * [73]
5.74 (LDA) [74,75]

6.005 (PBE–GGA) [23]
5.87 (PBEsol) [23]

5.87 (PBE–GGA) [76]
5.77 (LDA) [23]

6.0039 (PBE–GGA) [77]
(5.874) [36]
(5.85) [69]

23.5 [72] 5.0 [72]

CsPbBr2.75Cl0.25
a = 5.801
c = 5.855 807.008 a = 6.005

c = 5.859 (PBE–GGA) [78]

CsPbBr2Cl a = 5.784
c = 5.748 774.139 a = 5.708

c = 6.012 (PBE–GGA) [78]

CsPbBr1.5Cl1.5
a = 5.739
c = 5.7395 756.278 a = 5.718

c = 5.874 (PBE–GGA) [78] - -

CsPbBrCl2
a = 5.695
c = 5.6947 738.692 a = 5.725

c = 6.012 (PBE–GGA) [78]

CsPbBr0.25Cl2.75
a = 5.672
c = 5.6722 730.005 a = 5.728

c = 5.879 (PBE–GGA) [78]



Materials 2020, 13, 4944 5 of 22

Table 1. Cont.

CsPbCl3 a = 5.605 704.347 24.2106 5.0142

5.56 (WC–GGA) [72]
5.61 (TB–mBJ) [73]

5.73 (PBE–GGA) [79]
5.49 (LDA) [75]

5.743 (PBE–GGA) [80]
5.726 (PBE–GGA) [78]
5.728 (PBE–GGA) [81]
5.618 (PBE–GGA)[82]

5.740 (LDA) [74]
5.603 (PBE–GGA) [55]

5.605 [70,83]
5.61 [55]

5.6228 [30]

25.8 [72]
22.59 [81]
25.447[82]
26.33 [73]

5.0 [72]
4.33 [81]
4.4 [82]

* Tran and Blaha modified Becke-Johnson potential.
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Figure 3. (a) Theoretical X-ray diffraction (XRD) patterns of CsPb(Br1−xClx)3 obtained using
visualization for electronic and structural analysis (VESTA) software, (b) XRD patterns (2θ = 30◦–32.1◦),
and (c) the peak position versus Cl content (x).
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3.2. Electronic Properties

3.2.1. Electronic Band Structure

First, the electronic structures for CsPb(Br1−xClx)3 were calculated by PBE–GGA and mBJ–GGA
potentials without/with SOC. Figure 5 shows the calculated band structures of CsPb(Br1−xClx)3 using
the mBJ–GGA potentials without/with SOC. In contrast, Figure 6 shows those using the potential of
PBE–GGA without SOC. The band structures have a direct transition character at M, which can improve
the photoabsorption coefficient and accelerate the rate of radiative recombination [84]. The calculated
Eg for CsPbBr3, CsPbBr2.75Cl0.25, CsPbBr2Cl, CsPbBr1.5Cl1.5, CsPbBrCl2, CsPbBr0.25Cl2.75, and CsPbCl3
based on the mBJ–GGA potential are 2.23, 2.46, 2.40, 2.51, 2.59, 2.64, and 2.90 eV, respectively, whereas
the Eg values obtained using the PBE–GGA potential are 1.53, 1.68, 1.56, 1.69, 1.71, 1.77, and 1.93 eV,
respectively, as shown in Table 2. The Eg calculated using mBJ–GGA were the closest to the experimental
values [51–55].Materials 2020, 13, x FOR PEER REVIEW 7 of 22 
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Figure 5. Calculated band structures of CsPb(Br1–xClx)3 using the modified Becke−Johnson (mBJ)-GGA
potential without/with spin-orbital coupling (SOC).
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Figure 6. Calculated band structures of CsPb(Br1−xClx)3 using the Perdew–Burke–Ernzerhof
(PBE)-GGA potential.

By including the effect of SOC, the calculated Eg values are smaller than the experimental by
approximately 1.23 and 1.28 eV for pure CsPbBr3 and CsPbCl3, respectively, and result in more
reasonable band dispersions [85,86]. The SOC causes the conduction band (CB) to decrease by splitting
it into a twofold degenerated state (p1/2) corresponding to light electrons and a fourfold degenerate
state (p3/2) corresponding to heavy electrons at this point [57,87,88]. In contrast, the valance band (VB)
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showed no significant change in this area [57,87,88]. The correction was thus applied to the Eg with the
following equation [78,84,89]:

∆Eg (A1−xBx) = (1− x)∆Eg(A) + x∆Eg(B) (1)

where ∆Eg (A1−xBx), ∆Eg(A), and ∆Eg(B) are the Eg corrections for the CsPb(Br1−xClx)3, CsPbBr3,
and CsPbCl3 compounds, respectively. Figure 7 shows the calculated Eg using PBE–GGA, mBJ–GGA,
mBJ–GGA + SOC, and corrected mBJ–GGA + SOC(C). The calculated Eg by mBJ–GGA and mBJ–GGA
+ SOC(C) are in good agreement with the experimental values [53,55]. The small differences between
the theoretical and experimental values are mainly attributed to the changed size for different
mixed-halide [84], as depicted in the XRD patterns and the small 1 × 1 × 4 supercell models.
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The optical bowing parameter (b) was calculated for determining the relationship between the Eg

and the Cl composition x [78,90,91] using the following equation:

∆Eg(x) = bx(x− 1) = Eg(x) − [(1− x)Eg(A) + xEg(B) (2)

where b is the bowing parameter; Eg(A) and Eg(B) are the band gaps of pure A and B, respectively;
and Eg(x) is the bandgap of A, B mixed-halide perovskites with the composition x. The dependence of
the obtained Eg on the concentration of Cl (x) was given by fitting the nonlinear variation with the
quadratic function as follows:

E(PBE−GGA)
g (x) = 1.55235 + 0.11317 x + 0.25154 x2 (3)

E(mBJ−GGA)
g (x) = 2.26601 + 0.37552 x + 0.23037 x2 (4)

E
( mBJ −GGA

SOC
)

g (x) = 1.08065 + 0.73866 x− 0.14156 x2 (5)

E
( mBJ −GGA

SOC
)

g (x) = 2.31016 + 0.79639 x− 0.14902 x2 (6)
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Table 2. Calculated Eg (eV) values of CsPb(Br1−xClx)3 perovskite using PBE–GGA, mBJ–GGA, and
mBJ–GGA + spin-orbital coupling (SOC) potentials, and mBJ–GGA + SOC(C).

CsPb(Br1−xClx)3

Eg (eV)

This Work
Other (Exp.)

PBE–GGA mBJ–GGA mBJ–GGA + SOC mBJ–GGA + SOC (C)

CsPbBr3 1.53 2.23 1.05 2.28

2.34 (GW) [74]
1.61 (PBE–GGA) [23]

2.36 (nTmBj) [23]
2.228 (KTB–mBJ) * [92]
2.08 (GLLB-SC) ** [93]

2.10 (QE) *** [35]
2.50 (mBJ–GGA) [77]

(2.36) [51,94]
(2.32) [52]
(2.282) [53]
(2.35) [95]

CsPbBr2.75Cl0.25 1.68 2.46 1.40 2.64 1.809 (PBE–GGA) [78]

CsPbBr2Cl 1.56 2.40 1.20 2.45 1.827 (PBE–GGA) [78]
(2.59) [94]

CsPbBr1.5Cl1.5 1.69 2.51 1.41 2.67 1.859 (PBE–GGA) [78]
(2.72) [94]

CsPbBrCl2 1.71 2.59 1.52 2.78 1.881(PBE–GGA) [78]
(2.88) [94]

CsPbBr0.25Cl2.75 1.77 2.64 1.53 2.80 2.05(PBE–GGA) [78]

CsPbCl3 1.93 2.90 1.69 2.97

2.20 (PBE–GGA) [78,96]
2.829 (KTB–mBJ) [92]

2.92 (HSE) **** [79]
3.406 (PBE–GGA)[82]

2.88 (GW) [74]
2.74 (TB–mBJ) [73]

2.168 (PBE–GGA) [23]
3.10 (nTmBj) [23]

(3.00) [54]
(2.97) [55]

(3.04) [95](2.98) [94]

* Koller, Tran, and Blaha modified Becke-Johnson potential; ** Gritsenko, van Leeuwen, van Lenthe,
and Baerends-Solid and Correlation; *** Quantum Espresso 6.0; **** Hybrid nonlocal exchange-correlation functional.

These results indicate the bowing parameters b = 0.25154, 0.23037, −0.14156, and −0.14902 eV for
the Eg obtained using PBE–GGA, mBJ–GGA, mBJ–GGA + SOC, and mBJ–GGA + SOC(C), respectively.

The influences of the dispersive nature of the conduction band (CB) and valence band (VB) on
the effective masses (me

∗ and mh
∗) are shown in Figure 8. The effective masses are related to carrier

mobility, which is an essential criterion for the excellent power efficiency of photovoltaic materials [85].
me
∗ and mh

∗ at the band edges are related to the band dispersions. As a result, the effective masses
at the CB minimum (CBM) and VB maximum (VBM) were approximated by a parabola [85,97–99].
By fitting the VB and CB edges, the effective mass (m∗) was evaluated numerically using the following
equations:

(m∗)i j = }2


∂2εn

( ⇀
k
)

∂kikj


−1

i, j = x, y, z (7)

where m∗ is the effective mass of the charge carrier, i and j are the reciprocal components, εn(
⇀
k) is the

energy dispersion function of the nth band,
⇀
k represents the wave vector, and } represents the reduced

Planck constant.
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Figure 8. Effect of Cl concentration on the electron and hole effective masses for CsPb(Br1−xClx)3 perovskites.

The mBJ–GGA calculation without SOC results in an accurate Eg value; however, the previous
studies stated that the introduction of SOC increases band dispersion and results in more accurate
effective masses with respect to DFT calculation without SOC [23,78,79,86,92,96,100–102]. Therefore,
we employ mBJ–GGA + SOC to evaluate the effective charge masses. The values of me* and mh*
decreased significantly with the increase in Cl concentration up to 0.33 owing to the decrease of
parabolic nature of the band structure [103]. The increased parabolic nature caused a drastic increase
of the effective mass of carriers for high concentration of Cl [103]. The calculated effective charge
masses around the M point of the Brillouin zone obtained by evaluating the second derivatives are
shown in Table S8 (Supplementary Materials). The reduced masses µr were calculated using the
following equation:

µr =
me
∗mh

∗

me∗ + mh
∗

(8)

The effective Bohr diameter of a Wannier–Mott exciton (a0) can be defined [99] using the
following equation:

a0 =
2}2ε(∞)

µre2 (9)

where ε(∞) is the dielectric constant in the limit of infinite wavelength, and the exciton binding energy
(Eb) is given by the following:

Eb =
2}2ε(∞)

µra02 (10)

For calculating Eb, we need to know the dielectric constant of the material ε(∞) and the reduced
masses (µr), which can be obtained by DFT calculation. The estimated a0 and Eb values were between
5.6 and 8.9 nm and between 41 and 72 meV, respectively, which were in good agreement with other
theoretical [16,75,100,104,105] and experimental [106,107] values. A weaker Eb indicates that the charge
carriers behave more like free charge carriers [99].

The dependence of the obtained a0 and Eb values on the concentration of Cl (x) was determined by
fitting the nonlinear variation as Cl concentration x with the linear and quadratic functions as follows:

aPBE−GGA
0 (x) = 13.6268− 4.12266 x (11)

amBJ−GGA
0 (x) = 8.16334− 1.5024 x (12)

E(PBE−GGA)
b (x) = 22.29863− 0.92682 x + 17.41855 x2 (13)
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E(mBJ−GGA)
b (x) = 44.29984− 24.98693 x + 49.22733 x2 (14)

These results indicate the Bohr diameter bowing parameters of b = −4.12266 and− 1.5024 nm
obtained using PBE–GGA and mBJ–GGA, respectively. These results show that a0 decreased with
the increase in Cl concentration, as shown in Figure 9a. Furthermore, the bowing parameters
b = 17.41855 and 49.22733 meV of Eb using PBE–GGA and mBJ–GGA indicated the decrease in Eb
with the increase in Cl concentration (x), as shown in Figure 9b.
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Figure 9. (a) Bohr diameter a0 (nm) and (b) exciton binding energy Eb (meV) with respect to Cl
content (x).

3.2.2. Density of States (DOS)

The total DOS (TDOS) was calculated using the mBJ–GGA potential, as shown in Figure 10.
However, as the concentration (x) increased from 0.00 to 1.00, the DOS edges changed. The partial DOS
(PDOS) shown in Figure 11 are based on the mBJ–GGA potential, because we are interested in the valence
band (VB) and conduction band (CB) components. Previous studies have shown that inorganic cation
Cs+ does not contribute to VB maximum (VBM) and CB minimum (CBM), and only maintains
overall load neutrality and structural stability [23,26,37,72,75,78,79,82,85,92,93,100,101,108,109].
Therefore, we observed only the states of Pb and halogen elements (Cl and Br), as shown in Figure 11.
The VBM originates mainly from the p orbitals of Br and Cl, and a small number of contributions from
s orbitals of Pb can also be observed. The CBM originated from the p states of Pb and halogen elements
(Cl and Br). The CB structure is relatively similar for all of the compounds, and the CBM for each
compound comprises mainly p orbitals of Pb and halogen elements (Cl and Br). The uppermost VB is
steep, while the lowermost CB in PDOS is relatively flat.
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Figure 10. Total density of states (TDOS) of CsPb(Br1−xClx)3 calculated using the mBJ–GGA potential.
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Figure 11. Calculated partial DOS (PDOS) of CsPb(Br1−xClx)3 calculated using the mBJ–GGA potential
without SOC.

For a detailed view of the band structure of CsPbBr1.5Cl1.5, PDOS was plotted on the band
structure using the mBJ–GGA potential (Figure 12a). The PDOS (Figure 12b) indicated that the effects
of the Cs atoms did not follow any specific rules, whereas it shows that the Eg trends are the result of
the effects of Pb and Br [93]. Similar band structures of CsPbBr3 and CsPbCl3 with PDOS are shown in
Figure S1 (Supplementary Materials).
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Figure 12. (a) Band structures and (b) PDOS of CsPbBr1.5Cl1.5 obtained using the mBJ–GGA potential.

To support this observation, the total charge density distributions are calculated and presented
in the (001) plane, as shown in Figure 13a–g, with the structures adjacent to each concentration.
The nature of bonding among the atoms could be analyzed using the map of electronic charge density
distribution [72,109]. According to the Pauling scale, the electro-negativity of Cs, Pb, Br, and Cl is 0.79,
2.33, 2.96, and 3.16, respectively. For the description of the bonding character, the difference of the
electro-negativity (XA-XB) is crucial [110], where XA and XB are the electro-negativities of the A and
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B atoms, respectively. The percentage of the ionic character (IC) of the bonding can be obtained from
the following equation [111]:

% IC =
[
1− e−(0.25)(XA−XB)

2
]
∗ 100 (15)

Materials 2020, 13, x FOR PEER REVIEW 12 of 22 

 

Using this equation, the obtained % IC of Cs–Br, Cs–Cl, Pb–Br, and Pb–Cl was 69.85, 75.44, 10.02, 
and 15.82, which indicated that the bond between Cs–Cl/Br is mostly ionic and partially covalent. In 
contrast, the Pb–Cl/Br bond is mostly covalent and partially ionic. Strong covalent bonds between 
Pb-halides have also been predicted by previous reports [72,79,110,112]. 

 
Figure 13. Calculated electron density in the (001) plane of CsPb(Br1−xClx)3. (a) x = 0.00, (b) x = 0.25, (c) 
x = 0.33, (d) x = 0.50, (e) x = 0.66, (f) x = 0.75, and (g) x = 1.00 using the mBJ–GGA potential. 

3.3. Optical Properties 

The study of the optical properties of the CsPb(Br1−xClx)3 perovskite is essential because of its 
potential for use in photonic and optoelectronic applications. Calculations of dielectric functions with 
both real ε1(ω) and imaginary ε2(ω) parts, refractive index n(ω), extinction coefficient k(ω) , 
absorption coefficient α(ω), optical conductivity ߪ(ω), and reflectivity R(ω) were explored by mBJ–
GGA potential. These optical parameters can be attracted by the knowledge of the complex dielectric 
function ε(ω) = ε1 (ω) + iε2 (ω). The imaginary part of the dielectric function ε2 (ω), according to the 
perturbation theory, is given by the following equation [113,114]: εଶ(ω) = ቆ hଶeଶπwଶmଶቇ ෍ න dଷ୧,୨ kۦi୩|p஑|j୩ۧൻj୩หpஒหi୩ൿxδ(ε୧ౡ − ε୨ౡ − ω) (16) 

where p is the moment matrix element between the band α and β states within the crystal momentum 
k. ik and jk are the crystal wave functions corresponding to the conduction and valence bands with 
the crystal wave vector k, respectively. The real part εଵ(ω) of the dielectric function can be expressed 
as follows [114]: 

a 

b 

c 

Cs 

Br 

Pb 

(a) 

Pb 

Cs 

Cl 

(b) 

Pb 

Cs 

Cl 

(c) 

Pb 

Cs 

Cl 

(d) 

Pb 

Cs 

Cl 

(e) 

Pb 

Cs 

Br 

(f) 

(g) 

Pb 

Cs 

Cl 

Figure 13. Calculated electron density in the (001) plane of CsPb(Br1−xClx)3. (a) x = 0.00, (b) x = 0.25,
(c) x = 0.33, (d) x = 0.50, (e) x = 0.66, (f) x = 0.75, and (g) x = 1.00 using the mBJ–GGA potential.

Using this equation, the obtained % IC of Cs–Br, Cs–Cl, Pb–Br, and Pb–Cl was 69.85, 75.44, 10.02,
and 15.82, which indicated that the bond between Cs–Cl/Br is mostly ionic and partially covalent.
In contrast, the Pb–Cl/Br bond is mostly covalent and partially ionic. Strong covalent bonds between
Pb-halides have also been predicted by previous reports [72,79,110,112].

3.3. Optical Properties

The study of the optical properties of the CsPb(Br1−xClx)3 perovskite is essential because of its
potential for use in photonic and optoelectronic applications. Calculations of dielectric functions
with both real ε1(ω) and imaginary ε2(ω) parts, refractive index n(ω), extinction coefficient k(ω),
absorption coefficientα(ω), optical conductivity σ(ω), and reflectivity R(ω) were explored by mBJ–GGA
potential. These optical parameters can be attracted by the knowledge of the complex dielectric
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function ε(ω) = ε1 (ω) + iε2 (ω). The imaginary part of the dielectric function ε2 (ω), according to the
perturbation theory, is given by the following equation [113,114]:

ε2(ω) =

(
h2e2

πw2m2

)∑
i,j

∫
d3k〈ik

∣∣∣pα ∣∣∣j k〉〈jk
∣∣∣pβ
|i k〉xδ

(
εik − εjk −ω

)
(16)

where p is the moment matrix element between the band α and β states within the crystal momentum
k. ik and jk are the crystal wave functions corresponding to the conduction and valence bands with the
crystal wave vector k, respectively. The real part ε1(ω) of the dielectric function can be expressed as
follows [114]:

ε1(ω) = 1 +
2
π

p
∫
∞

0

ω′ε2(ω
′)

(ω′)2
− (ω)2 dω (17)

where p is the value of the principal of the integral.
The absorption coefficient, optical conductivity, refractive index, extinction coefficient,

and reflectance denoted by α (ω), σ (ω), n (ω), k (ω), and R (ω), respectively, are directly related to the
ε1 (ω) and ε2 (ω) [113–116].

The calculated ε1 (ω) and ε2 (ω) are shown in Figure 14a,b. As shown in Figure 14a, the static
dielectric constant ε1(0) is given by the low energy limit of ε1(ω). The peaks of ε1(ω) shifted to higher
energy as x increased from 0.00 to 1.00. The results obtained using mBJ–GGA for ε1(0) at various Cl
concentrations (x) are presented in Table 3 and shown in Figure 17. ε1(0) decreased with an increase in
the concentration of Cl, consistent with an increase in Eg. The results obey the following equation:

ε1(x) = 3.77052− 0.4113 x− 0.09431 x2 (18)
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Figure 14. Calculated (a) real dielectric function ε1 (ω) and (b) imaginary dielectric function ε2 (ω) of
CsPb(Br1−xClx)3 with respect to Cl content (x) using the mBJ–GGA potential.
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Table 3. Calculation of static optical parameters ε1(0), refractive index n(0), and reflectivity R(0) for
CsPb(Br1−xClx)3 compounds.

CsPb(Br1−xClx)3
mBJ–GGA (others)

ε1 (0) n (0) R (0)%

CsPbBr3

3.82
(4.30) [104]
(4.60) [23]
(4.63) [72]

1.96
Exp. (1.85–2.3)

[56]
(2.152) [72]

10.50
(13.4) [72]

CsPbBr2.75Cl0.25 3.59 1.897 9.65
CsPbBr2Cl 3.57 1.890 9.55

CsPbBr1.5Cl1.5 3.56 1.882 9.52
CsPbBrCl2 3.55 1.880 9.36

CsPbBr0.25Cl2.75 3.41 1.848 8.85

CsPbCl3

3.23
(3.69) [104]
(3.00) [81]
(4.10) [23]
(4.43) [72]

1.798
(1.739) [81]
(2.105) [72]

8.11
(12.7) [72]
(10) [82]

For CsPbBr3, ε1(0) was 3.82, which agrees well with the result obtained in the previous
studies [23,72,105]. Figure 14b shows the behavior of ε2 (ω) for all Cl concentrations. For x = 0.00, 0.25,
0.33, 0.50, 0.66, 0.75, and 1.00, the critical points in ε2(ω) occurred at approximately 2.14, 2.25, 2.28,
2.34, 2.45, 2.55, and 2.84 eV, respectively, which were closely related to the direct Eg values of 2.26, 2.47,
2.39, 2.51, 2.58, 2.64, and 2.90 eV, respectively.

The refractive index n (ω) and extinction coefficients k (ω) were calculated using the mBJ–GGA
potential, as shown in Figure 15a,b. The spectrum of n (ω) closely resembles the spectrum of ε1(ω) [117].
For CsPbBr3, the calculated n (0) value was 1.96, which agrees well with the previous theoretical
and experimental values [56,72]. For CsPbCl3, n(0) was 1.798, which agrees well with the previous
value [72,81]. The calculated n (0) versus the Cl concentration (x) is expressed as follows:

n(x) = 1.94752− 0.13036 x− 0.00939 x2 (19)
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Figure 15. Calculated (a) refraction indices n (ω) and (b) extinction coefficients k (ω) of CsPb(Br1−xClx)3

with respect to Cl content (x) using the mBJ–GGA potential.

Figure 15b shows that k(ω) depends on the concentration of Cl similar to that of ε2 (ω). The peak
value of k (ω) shifted to lower energies as Cl concentration increased from 0.00 to 1.00.

The initial reflectivity R(ω) values were around 10.50% and 8.11% at zero frequency, which then
increased to 18.62% (at 3.53 eV) and 15.24% (at 4.30 eV) for CsPbBr3(x = 0.00) and CsPbCl3 (x = 1.00),
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respectively, as shown in Figure 16. The maximum reflectivity peaks of 48%, 46.7%, 47.8%, 48.5%,
48.7%, 48.6%, and 51% occurred at energy values of 15.88, 15.97, 16.00, 16.10, 16.16, 16.18, and 16.29 eV,
respectively, and then began to fluctuate and decrease at higher energies. The value of R (0) decreased
with the increase in Cl concentration (x), as shown in Figure 17 and presented in Table 3. The calculated
R (0) versus Cl concentration (x) was fitted as follows:

R(x)% = 10.3264− 1.55348 x− 0.54961 x2. (20)
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Figure 17. Static refractive index, real dielectric function, and reflectivity at zero frequency versus Cl
content (x).

Figure 18a shows the absorption coefficient α (ω). With the increase in Cl concentration (x),
the absorption edge shifted to higher energy. The wide absorption range from visible to ultraviolet
indicates that these compounds are useful for various optical and optoelectronic applications [72].
Figure 18b shows similar features of the optical conductivity σ (ω) characteristics, and provides
information on the effects of external parameters on the electronic structure [118].
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4. Conclusions

In this study, we investigated the influence of halide composition on the structural, electronic,
and optical properties of the mixed-halide perovskites CsPb(Br1−xClx)3 using DFT. When the Cl content
x was increased from 0.00 to 1.00, a decrease in unit-cell volume was observed. Theoretical XRD analyses
revealed that the peak shifts to larger angles when the concentration of Cl increases. An increase
in Eg was observed with an increase in the concentration of Cl. The Eg values calculated using
the PBE–GGA potential were between 1.53 and 1.93 eV, while those calculated using the mBJ–GGA
potential were between 2.23 and 2.90 eV. The increase in Eg with the increase in Cl content was due to
the fact that the hybridization of Cl 3p states with Pb-s states was stronger than that with Br 4p states,
which leads to a downshift of VBM and a decrease in the lattice constant. The calculated Eg and exciton
binding energy Eb using mBJ–GGA potential best matched the previously reported experimental and
theoretical values. The effective masses of electron and hole (me* and mh*) are correlated with the
energies of Eg. The calculated photoabsorption coefficients display a blue shift of the absorption at a
higher Cl concentration.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/13/21/4944/s1,
Tables S1–S7: Structural properties of CsPb(Br1−xClx)3 Perovskite, Table S8: Effective mass of electron (me*) and
hole (mh*), reduced mass (µr), bohr diameter (a0), dielectric constant (ε), and exciton binding energy (Eb) values
calculated by PBE–GGA, mBJ–GGA, and mBJ–GGA + SOC potentials, Figure S1: Band structures and PDOS of (a)
CsPbBr3 and (b) CsPbCl3 obtained using the mBJ–GGA potential.
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