materials-logo

Journal Browser

Journal Browser

Towards Sustainable Low-Carbon Concrete—Second Edition

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Construction and Building Materials".

Deadline for manuscript submissions: 20 February 2026 | Viewed by 1263

Special Issue Editors


E-Mail Website
Guest Editor
School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China
Interests: sustainable; high-performance and multifunctional cementitious composites; fiber-reinforced concrete materials and structures; experimental methods for civil engineering
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Civil and Mechanical Engineering, Curtin University, Perth, WA 6102, Australia
Interests: sustainable use of wastes and by-products in construction; geopolymer concrete; design of concrete structures; concrete durability and microstructures
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue, entitled “Towards Sustainable Low-Carbon Concrete—Second Edition”, seeks to explore and highlight innovative research and advancements in the development of low-carbon concrete. As the construction industry faces increasing pressure to reduce its carbon footprint, the quest for sustainable building materials has become more critical than ever. Concrete, being the most widely used construction material, plays a pivotal role in this endeavor. This Special Issue aims to showcase cutting-edge research, novel formulations, and case studies that demonstrate significant reductions in carbon emissions associated with concrete production, use, and end-of-life stages. Topics of interest include, but are not limited to, alternative cementitious materials, carbon capture and utilization in concrete, enhancements in concrete recycling processes, and lifecycle assessments of concrete structures. Through this compilation, we aim to provide a comprehensive overview of the current trends, challenges, and future directions in the pursuit of sustainable, low-carbon concrete. Contributions are invited from researchers, engineers, and practitioners who are working to make concrete more sustainable without compromising its performance, durability, or cost-effectiveness. Together, we can contribute to building a more sustainable future, one cubic meter of concrete at a time.

You may choose our Joint Special Issue in Construction Materials.

Dr. Jiaxiang Lin
Prof. Dr. Prabir K. Sarker
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • sustainable concrete
  • low-carbon cement
  • alternative binders
  • carbon capture in concrete
  • concrete recycling
  • eco-friendly construction materials
  • lifecycle assessment of concrete
  • green building technologies
  • concrete durability and performance
  • innovative concrete mix designs

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

24 pages, 2397 KB  
Article
Carbonation Treatments for Durable Low-Carbon Recycled Aggregate Concrete
by Ruth Saavedra and Miren Etxeberria
Materials 2025, 18(17), 4168; https://doi.org/10.3390/ma18174168 - 5 Sep 2025
Abstract
The use of supplementary cementitious materials and the CO2 uptake capacity of cementitious materials—including recycled concrete aggregates—not only promotes the circular economy but may also present an opportunity to increase their ecoefficiency, thus improving the shrinkage and durability properties of concretes. This [...] Read more.
The use of supplementary cementitious materials and the CO2 uptake capacity of cementitious materials—including recycled concrete aggregates—not only promotes the circular economy but may also present an opportunity to increase their ecoefficiency, thus improving the shrinkage and durability properties of concretes. This study analyses the impact of carbonated recycled aggregates and CO2 curing on improving the properties of commercial structural self-compacting concrete. Recycled aggregate concretes (RACs) were produced using 50% and 60% coarse recycled concrete aggregate (RCA), in carbonated and uncarbonated forms, and two types of cement—ordinary Portland cement (CEM I) and CEM II/B-M Portland composite cement containing 24% less clinker than CEM I—all with similar compressive strengths. After evaluating the CO2 curing process, the physical, mechanical, shrinkage, and durability properties (including suction and carbonation resistance) of the concretes were assessed. The properties of the RACs were compared with those achieved by conventional concrete, to generate insights for developing a highly sustainable concrete manufacturing process. Taking all the assessed properties into account, the CO2 curing process improved concrete’s properties. In addition, RAC-C50-I concrete (using CEM I with carbonated RCA) and RAC50-II (using CEM IIB and uncarbonated RCA) exhibited the greatest durability, resulting in reductions in sorptivity values of 40% and 45%, and decreases in the carbonation coefficient of 16% and 21%, respectively, compared to concrete without CO2 curing. Full article
(This article belongs to the Special Issue Towards Sustainable Low-Carbon Concrete—Second Edition)
Show Figures

Figure 1

17 pages, 8747 KB  
Article
Effects of EOGO in Metakaolin-Based Geopolymer
by Chaewon Lee, Hoyoung Lee, Jinwoo An and Boo Hyun Nam
Materials 2025, 18(16), 3864; https://doi.org/10.3390/ma18163864 - 18 Aug 2025
Viewed by 507
Abstract
Geopolymer concrete uses a geopolymer binder instead of traditional Portland cement; thus, it reduces carbon emissions by a significant amount. In this study, Edge-Oxidized Graphene Oxide (EOGO), a carbon-based nanomaterial, was added into a metakaolin-based geopolymer, and its effect on the mechanical and [...] Read more.
Geopolymer concrete uses a geopolymer binder instead of traditional Portland cement; thus, it reduces carbon emissions by a significant amount. In this study, Edge-Oxidized Graphene Oxide (EOGO), a carbon-based nanomaterial, was added into a metakaolin-based geopolymer, and its effect on the mechanical and rheological properties of the mixture was investigated. EOGO was added into the mixture at 0% (control), 0.1%, 0.5%, and 1% of the metakaolin mass. Several experiments were conducted to characterize the properties of the metakaolin–EOGO (MKGO) geopolymer, including its compressive strength, free–free resonance column (FFRC), void content, water absorption, setting time, flow, and rheology. It was found that the compressive strength and stiffness showed their maximum values and the void content was minimized at 0.1% EOGO. In addition, as the EOGO addition rate increased, the setting time tended to shorten, and the fluidity tended to decrease. This suggests that 0.1% EOGO is the most optimal content in metakaolin paste. This study confirms that EOGO is an additive material that can improve the performance of metakaolin-based geopolymers and presents opportunities for the development of sustainable construction materials through optimization of EOGO addition. Full article
(This article belongs to the Special Issue Towards Sustainable Low-Carbon Concrete—Second Edition)
Show Figures

Figure 1

16 pages, 5284 KB  
Article
Hydration, Soundness, and Strength of Low Carbon LC3 Mortar Using Waste Brick Powder as a Source of Calcined Clay
by Saugat Humagain, Gaurab Shrestha, Mini K. Madhavan and Prabir Kumar Sarker
Materials 2025, 18(15), 3697; https://doi.org/10.3390/ma18153697 - 6 Aug 2025
Viewed by 551
Abstract
The construction industry is responsible for 39% of global CO2 emissions related to energy use, with cement responsible for 5–8% of it. Limestone calcined clay cement (LC3), a ternary blended binder system, offers a low-carbon alternative by partially substituting clinker [...] Read more.
The construction industry is responsible for 39% of global CO2 emissions related to energy use, with cement responsible for 5–8% of it. Limestone calcined clay cement (LC3), a ternary blended binder system, offers a low-carbon alternative by partially substituting clinker with calcined clay and limestone. This study investigated the use of waste clay brick powder (WBP), a waste material, as a source of calcined clay in LC3 formulations, addressing both environmental concerns and SCM scarcity. Two LC3 mixtures containing 15% limestone, 5% gypsum, and either 15% or 30% WBP, corresponding to clinker contents of 65% (LC3-65) or 50% (LC3-50), were evaluated against general purpose (GP) cement mortar. Tests included setting time, flowability, soundness, compressive and flexural strengths, drying shrinkage, isothermal calorimetry, and scanning electron microscopy (SEM). Isothermal calorimetry showed peak heat flow reductions of 26% and 49% for LC3-65 and LC3-50, respectively, indicating a slower reactivity of LC3. The initial and final setting times of the LC3 mixtures were 10–30 min and 30–60 min longer, respectively, due to the slower hydration kinetics caused by the reduced clinker content. Flowability increased in LC3-50, which is attributed to the lower clinker content and higher water availability. At 7 days, LC3-65 retained 98% of the control’s compressive strength, while LC3-50 showed a 47% reduction. At 28 days, the compressive strengths of mixtures LC3-65 and LC3-50 were 7% and 46% lower than the control, with flexural strength reductions being 8% and 40%, respectively. The porosity calculated from the SEM images was found to be 7%, 11%, and 15% in the control, LC3-65, and LC3-50, respectively. Thus, the reduction in strength is attributed to the slower reaction rate and increased porosity associated with the reduced clinker content in LC3 mixtures. However, the results indicate that the performance of LC3-65 was close to that of the control mix, supporting the viability of WBP as a low-carbon partial replacement of clinker in LC3. Full article
(This article belongs to the Special Issue Towards Sustainable Low-Carbon Concrete—Second Edition)
Show Figures

Figure 1

Back to TopTop