Dynamic Behaviors of Concentrated Colloidal Silica Suspensions: Dancing, Bouncing, Solidifying, and Melting Under Vibration
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Experiments
3. Results and Discussion
3.1. State Diagram and Visocisty
3.2. Dynamic Behavior Under Vertical Vibration
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wagner, N.J.; Mewis, J. Theory and Applications of Colloidal Suspension Rheology; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Coussot, P. Mudflow Rheology and Dynamics; Routledge: London, UK, 2017; ISBN 9781351429894. [Google Scholar]
- Ohshima, H.; Furusawa, K. Electrical Phenomena at Interfaces Fundamentals: Measurements, and Applications, 2nd ed.; Taylor & Francis: Oxfordshire, UK, 1998; ISBN 9780824790394. [Google Scholar]
- Blanco, E.; Hodgson, D.J.M.; Hermes, M.; Besseling, R.; Hunter, G.L.; Chaikin, P.M.; Cates, M.E.; Van Damme, I.; Poon, W.C.K. Conching chocolate is a prototypical transition from frictionally jammed solid to flowable suspension with maximal solid content. Proc. Natl. Acad. Sci. USA 2019, 116, 10303–10308. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, M.; Adachi, Y.; Ooi, S. On the Steady Shear Viscosity of Coagulated Suspensions. Nihon Reoroji Gakkaishi 2000, 28, 143–144. [Google Scholar] [CrossRef]
- Brown, E.; Jaeger, H.M. Shear thickening in concentrated suspensions: Phenomenology, mechanisms and relations to jamming. Rep. Prog. Phys. 2014, 77, 046602. [Google Scholar] [CrossRef] [PubMed]
- Russel, W.B.; Saville, D.A.; Schowalter, W.R. Cambridge Monographs on Mechanics. In Colloidal Dispersions; Cambridge University Press: Cambridge, UK, 2012; ISBN 9780511608810. [Google Scholar]
- Johnson, S.B.; Franks, G.V.; Scales, P.J.; Boger, D.V.; Healy, T.W. Surface chemistry–rheology relationships in concentrated mineral suspensions. Int. J. Miner. Process 2000, 58, 267–304. [Google Scholar] [CrossRef]
- Yamaguchi, A.; Kobayashi, M.; Adachi, Y. Yield stress of mixed suspension of silica particles and lysozymes: The effect of zeta potential and adsorbed amount. Colloids Surfaces A Physicochem. Eng. Asp. 2019, 578, 123575. [Google Scholar] [CrossRef]
- Mari, R.; Seto, R.; Morris, J.F.; Denn, M.M. Discontinuous shear thickening in Brownian suspensions by dynamic simulation. Proc. Natl. Acad. Sci. USA 2015, 112, 15326–15330. [Google Scholar] [CrossRef]
- Singh, A.; Ness, C.; Seto, R.; de Pablo, J.J.; Jaeger, H.M. Shear Thickening and Jamming of Dense Suspensions: The “Roll” of Friction. Phys. Rev. Lett. 2020, 124, 248005. [Google Scholar] [CrossRef]
- Nakamura, H.; Kusano, T.; Hiruta, O.; Tani, M.; Ishii, M. Physical property control for innovative powder processes—Rheological control of concentrated slurry and wet granules. Adv. Powder Technol. 2020, 31, 1784–1788. [Google Scholar] [CrossRef]
- Komoda, Y.; Ishibashi, K.; Kuratani, K.; Hidema, R.; Suzuki, H.; Kobayashi, H. Rheological interpretation of the structural change of LiB cathode slurry during the preparation process. J. Comput. Inf. Syst. Open 2022, 5, 100038. [Google Scholar] [CrossRef]
- Samitsu, S.; Tamate, R.; Ueki, T. Rheological Properties of Dense Particle Suspensions of Starches: Shear Thickening, Shear Jamming, and Shock Absorption Properties. Langmuir 2024, 40, 26852–26863. [Google Scholar] [CrossRef]
- Majumdar, S.; Peters, I.R.; Han, E.; Jaeger, H.M. Dynamic shear jamming in dense granular suspensions under extension. Phys. Rev. E 2017, 95, 012603. [Google Scholar] [CrossRef] [PubMed]
- Merkt, F.S.; Deegan, R.D.; Goldman, D.I.; Rericha, E.C.; Swinney, H.L. Persistent Holes in a Fluid. Phys. Rev. Lett. 2004, 92, 184501. [Google Scholar] [CrossRef] [PubMed]
- von Kann, S.; Snoeijer, J.H.; van der Meer, D. Phase Diagram of Vertically Vibrated Dense Suspensions. Phys. Fluids 2014, 26, 113302. [Google Scholar] [CrossRef]
- Shinbrot, T.; Rutala, M.; Montessori, A.; Prestininzi, P.; Succi, S. Paradoxical ratcheting in cornstarch. Phys. Fluids 2015, 27, 103101. [Google Scholar] [CrossRef]
- Hou, X.; Peterson, J.D. A study of dense suspensions climbing against gravity. J. Non-Newtonian Fluid Mech. 2022, 307, 104868. [Google Scholar] [CrossRef]
- James, N.M.; Han, E.; de la Cruz, R.A.L.; Jureller, J.; Jaeger, H.M. Interparticle hydrogen bonding can elicit shear jamming in dense suspensions. Nat. Mater. 2018, 17, 965–970. [Google Scholar] [CrossRef]
- Garat, C.; de Richter, S.K.; Lidon, P.; Colin, A.; Ovarlez, G. Using good vibrations: Melting and controlled shear jamming of dense granular suspensions. J. Rheol. 2022, 66, 237–256. [Google Scholar] [CrossRef]
- Hodgson, D.J.M.; Hermes, M.; Blanco, E.; Poon, W.C.K. Granulation and suspension rheology: A unified treatment. J. Rheol. 2022, 66, 853–858. [Google Scholar] [CrossRef]
- Nakamura, H.; Makino, S.; Ishii, M. Effects of electrostatic interaction on rheological behavior and microstructure of concentrated colloidal suspensions. Colloids Surfaces A Physicochem. Eng. Asp. 2021, 623, 126576. [Google Scholar] [CrossRef]
- Fujita, Y.; Kobayashi, M. Transport of colloidal silica in unsaturated sand: Effect of charging properties of sand and silica particles. Chemosphere 2016, 154, 179–186. [Google Scholar] [CrossRef]
- Kobayashi, M.; Skarba, M.; Galletto, P.; Cakara, D.; Borkovec, M. Effects of heat treatment on the aggregation and charging of Stöber-type silica. J. Colloid Interface Sci. 2005, 292, 139–147. [Google Scholar] [CrossRef]
- Cheng, X.; McCoy, J.H.; Israelachvili, J.N.; Cohen, I. Imaging the Microscopic Structure of Shear Thinning and Thickening Colloidal Suspensions. Science 2011, 333, 1276–1279. [Google Scholar] [CrossRef]
- Shah, P.; Arora, S.; Driscoll, M.M. Coexistence of solid and liquid phases in shear jammed colloidal drops. Commun. Phys. 2022, 5, 222. [Google Scholar] [CrossRef]
- Shikata, T.; Pearson, D.S. Viscoelastic behavior of concentrated spherical suspensions. J. Rheol. 1994, 38, 601–616. [Google Scholar] [CrossRef]
- Lee, Y.-F.; Luo, Y.; Bai, T.; Velez, C.; Brown, S.C.; Wagner, N.J. Microstructure and rheology of shear-thickening colloidal suspensions with varying interparticle friction: Comparison of experiment with theory and simulation models. Phys. Fluids 2021, 33, 033316. [Google Scholar] [CrossRef]
- Ong, B.; Leong, Y.; Chen, S. Interparticle forces in spherical monodispersed silica dispersions: Effects of branched polyethylenimine and molecular weight. J. Colloid Interface Sci. 2009, 337, 24–31. [Google Scholar] [CrossRef]
- Kobayashi, M.; Sugimoto, T.; Sato, S.; Ishibashi, R. Climbing Colloidal Suspension. Liquids 2023, 3, 40–47. [Google Scholar] [CrossRef]
- Moteki, A.; Kobayashi, M. Rheological Behavior of an Aqueous Suspension of Oxidized Carbon Nanohorn (CNHox). Nanomaterials 2024, 14, 1247. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kobayashi, M.; Sugimoto, T.; Ishibashi, R.; Sato, S. Dynamic Behaviors of Concentrated Colloidal Silica Suspensions: Dancing, Bouncing, Solidifying, and Melting Under Vibration. Liquids 2025, 5, 18. https://doi.org/10.3390/liquids5030018
Kobayashi M, Sugimoto T, Ishibashi R, Sato S. Dynamic Behaviors of Concentrated Colloidal Silica Suspensions: Dancing, Bouncing, Solidifying, and Melting Under Vibration. Liquids. 2025; 5(3):18. https://doi.org/10.3390/liquids5030018
Chicago/Turabian StyleKobayashi, Motoyoshi, Takuya Sugimoto, Ryoichi Ishibashi, and Shunsuke Sato. 2025. "Dynamic Behaviors of Concentrated Colloidal Silica Suspensions: Dancing, Bouncing, Solidifying, and Melting Under Vibration" Liquids 5, no. 3: 18. https://doi.org/10.3390/liquids5030018
APA StyleKobayashi, M., Sugimoto, T., Ishibashi, R., & Sato, S. (2025). Dynamic Behaviors of Concentrated Colloidal Silica Suspensions: Dancing, Bouncing, Solidifying, and Melting Under Vibration. Liquids, 5(3), 18. https://doi.org/10.3390/liquids5030018