A Basic Approach to Equations of States for Studying the Real Behavior of Noble Gases
Abstract
:1. Introduction
2. General Intermolecular Interactions
3. Argon
4. Further Noble Gases
5. Exceeding Limiting Concentrations
6. The Two-Phasic Region
7. Isotherms of Other Noble Gases
8. The Temperature Dependence of Parameters
9. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Eucken, A.; Wicke, E. Grundriss der Physikalischen Chemie, 10th ed.; Akademische Verlagsgesellschaft Geest & Portig: Leipzig, Germany, 1959. [Google Scholar]
- Woodcock, L.V. On Failures of van der Waals’ Equation at the Gas–Liquid Critical Point. Int. J. Thermophys. 2018, 39, 120. [Google Scholar] [CrossRef]
- Clausius, R. Über das Verhalten der Kohlensäure in Bezug auf Druck, Volumen und Temperatur. Ann. Phys. Chem. 1880, 9, 337–357. [Google Scholar] [CrossRef]
- Redlich, O.; Kwong, J.N.S. On the Thermodynamics of Solutions. V. An Equation of State. Fugacities of Gaseous Solutions. Chem. Rev. 1949, 44, 233–244. [Google Scholar] [CrossRef]
- Soave, G. Equilibrium Constants from a Modified Redlich-Kwong Equation of State. Chem. Eng. Sci. 1972, 27, 1197–1203. [Google Scholar] [CrossRef]
- Peng, D.-Y.; Robinson, D.B. A New Two-Constant Equation of State. Ind. Eng. Chem. Fundam. 1976, 15, 59–64. [Google Scholar] [CrossRef]
- Benedict, M.; Webb, G.B.; Rubin, L.C. An Empirical Equation for Thermodynamic Properties of Light Hydrocarbons and Their Mixtures: I. Methane, Ethane, Propane, and n-Butane. J. Chem. Phys. 1940, 8, 334–345. [Google Scholar] [CrossRef]
- Ree, F.H. Thermodynamic Functions at Liquid–Vapor Transition Range of the van der Waals, the Berthelot, and the Dieterici Equations of State. J. Chem. Phys. 1962, 36, 3373–3378. [Google Scholar] [CrossRef]
- Wohl, A. Untersuchungen über die Zustandsgleichung ΙII. Die Hauptzustandsgleichung und die Zustandsgleichungen der Einzelstoffe. Z. Phys. Chem. 1921, 99, 226–233. [Google Scholar] [CrossRef]
- Chapman, W.G.; Gubbins, K.E.; Jackson, G.; Radosz, M. Equation-of-state solution model for associating fluids. Fluid Phase Equilib. 1989, 52, 31–38. [Google Scholar] [CrossRef]
- Nezbeda, I. On Molecular-Based Equations of State: Perturbation Theories, Simple Models, and SAFT Modeling. Front. Phys. 2020, 8, 287. [Google Scholar] [CrossRef]
- Huang, S.H.; Radosz, M. Equation of State for Small, Large, Polydisperse, and Associating Molecules. Ind. Eng. Chem. Res. 1990, 29, 2284–2294. [Google Scholar] [CrossRef]
- Dufal, S.; Lafitte, T.; Haslam, A.J.; Galindo, A.; Clark, G.N.I.; Vega, C.; Jackson, G. The A in SAFT: Developing the contribution of association to the Helmholtz free energy within a Wertheim TPT1 treatment of generic Mie fluids. Mol. Phys. 2015, 113, 948–984. [Google Scholar] [CrossRef]
- Langhals, H. How the Concept of Solvent Polarity Investigated with Solvatochromic Probes Helps Studying Intermolecular Interactions. Liquids 2023, 3, 481–511. [Google Scholar] [CrossRef]
- Michels, A.; Levelt, J.M.; De Graaff, W. Compressibility Isotherms of Argon at Temperatures Between −25 °C and −155 °C, and at Densities up to 640 Amagat (Pressures up to 1050 Atmospheres). Physica 1958, 24, 659–671. [Google Scholar] [CrossRef]
- Michels, A.; Wijker, H.; Wijker, H.K. Isotherms of Argon Between 0 °C and 150° C and Pressures up to 2900 Atmospheres. Physica 1949, 15, 627–633. [Google Scholar] [CrossRef]
- Michels, A.; Levelt, J.M.; Wolkers, G.J. Thermodynamic Properties of Argon at Temperatures Between 0 °C and −140 °C and at Densities up to 640 Amagat (Pressures up to 1050 atm). Physica 1958, 24, 769–794. [Google Scholar] [CrossRef]
- McCain, W.D., Jr.; Ziegler, W.T. Critical Temperature, Critical Pressure, and Vapor Pressure of Argon. J. Chem. Eng. Data 1967, 12, 199–202. [Google Scholar] [CrossRef]
- Taylor, J.R. Error Analysis: The Study of Uncertainties in Physical Measurements, 2nd ed.; University Science Books: Sausalito, CA, USA, 1997; ISBN 0-935702-42-3. [Google Scholar]
- Beattie, J.A.; Brierley, J.S.; Barriault, R.J. The compressibility of krypton. I. An equation of State for krypton and the weight of a liter of krypton. J. Chem. Phys. 1952, 20, 1613–1615. [Google Scholar] [CrossRef]
- Beattie, J.A.; Brierley, J.S.; Barriault, R.J. The Compressibility of Gaseous Krypton. II. The Virial Coefficients and Potential Parameters of Krypton. J. Chem. Phys. 1952, 20, 1615–1618. [Google Scholar] [CrossRef]
- Beattie, J.A.; Barriault, R.J.; Brierley, J.S. The Compressibility of Gaseous Xenon. I. An Equation of State for Xenon and the Weight of a Liter of Xenon. J. Chem. Phys. 1951, 19, 1219–1221. [Google Scholar] [CrossRef]
- Michels, A.; Wassenaar, T.; Louwerse, P. Isotherms of Neon at Temperatures Between 0 °C and 150 °C and at Densities up to 1100 Amagat (Pressure up to 2900 Atmospheres). Physica 1960, 26, 539–543. [Google Scholar] [CrossRef]
- Keesom, W.H.; Kraak, H.H. The compressibility of helium gas between 2.6 °K and 4.2 °K. Physica 1935, 2, 37–44. [Google Scholar] [CrossRef]
- Keesom, W.H.; Walstra, W.K. Isotherms of helium at liquid helium temperatures. Physica 1940, 7, 985–991. [Google Scholar] [CrossRef]
- Canfield, F.B.; Leland, T.W.; Kobashy, R. Compressibility Factors for Helium-Nitrogen Mixtures. J. Chem. Eng. Data 1965, 10, 92–96. [Google Scholar] [CrossRef]
- Hertz, P. Über den gegenseitigen durchschnittlichen Abstand von Punkten, die mit bekannter mittlerer Dichte im Raume angeordnet sind. Math. Ann. 1909, 67, 387–398. [Google Scholar] [CrossRef]
- Chandrasekhar, S. Stochastic Problems in Physics and Astronomy. Rev. Mod. Phys. 1943, 15, 1–89. [Google Scholar] [CrossRef]
- Bondi, A. van der Waals Volumes and Radii. J. Phys. Chem. 1964, 68, 441–451. [Google Scholar] [CrossRef]
- Langhals, H. Determination of the Concentration of Gases by Measurement of Pressure. Anal. Lett. 1987, 20, 1595–1610. [Google Scholar] [CrossRef]
Region (i) | Region (ii) | Region (iii) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T in °C | E | c* | po | r | s | E | c* | po | r | s | E | p* | po | r | s |
25 | 564.9 | 21.8 | −0.931 | 0.9997645 | 1.42 | 907.9 | 28.4 | −79.2 | 0.993 | 15.6 | 43.35 | 0.123 | 121.4 | 0.9999998 | 0.2 |
0 | 791.3 | 35.8 | 0.055 | 0.9999980 | 0.08 | 795.6 | 29.9 | −57.5 | 0.993 | 12.9 | 29.75 | 0.131 | 126.4 | 1 | 0.1 |
−25 | 439.2 | 21.8 | 0.037 | 0.9999987 | 0.06 | 601.0 | 28.4 | −35.6 | 0.993 | 10.3 | 18.32 | 0.142 | 127.0 | 0.9999999 | 0.1 |
−50 | 250.7 | 13.7 | 0.012 | 0.9999997 | 0.02 | 445.6 | 28.4 | −13.5 | 0.994 | 7.5 | 9.79 | 0.156 | 119.0 | 0.9999999 | 0.1 |
−70 | 158.7 | 9.45 | −0.017 | 0.9999997 | 0.02 | 321.0 | 28.4 | 4.1 | 0.994 | 5.3 | 5.02 | 0.172 | 105.3 | 0.9999993 | 0.2 |
−85 | 110.1 | 6.97 | −0.049 | 0.9999958 | 0.07 | 240.0 | 29.9 | 17.1 | 0.994 | 3.7 | 2.45 | 0.190 | 92.0 | 0.9999974 | 0.4 |
−100 | 74.1 | 4.98 | −0.092 | 0.9999773 | 0.14 | 143.1 | 29.9 | 29.4 | 0.995 | 2.1 | 0.88 | 0.217 | 73.6 | 0.9999904 | 0.6 |
−110 | 55.5 | 3.86 | −0.129 | 0.9999399 | 0.21 | 80.7 | 29.9 | 36.9 | 0.994 | 1.2 | 0.41 | 0.237 | 54.4 | 0.9999529 | 1.3 |
−120 | 40.3 | 2.88 | −0.178 | 0.9998387 | 0.30 | 22.5 | 30.8 | 43.0 | 0.970 | 0.8 | 0.11 | 0.275 | 35.6 | 0.9998646 | 1.8 |
−122.5 | 36.9 | 2.65 | −0.193 | 0.9997909 | 0.33 | 9.4 | 30.8 | 43.5 | 0.915 | 0.9 | 0.07 | 0.287 | 30.4 | 0.9998158 | 2.0 |
−125 | 33.8 | 2.43 | −0.209 | 0.9997282 | 0.36 | 0.04 | 0.302 | 25.1 | 0.9997335 | 2.2 | |||||
−130 | 27.9 | 2.00 | −0.246 | 0.9995254 | 0.44 | 0.05 | 0.296 | −2.1 | 0.9999351 | 0.9 | |||||
−135 | 19.5 | 1.67 | −0.005 | 0.9999901 | 0.02 | 0.04 | 0.301 | −27.0 | 0.9999923 | 0.3 | |||||
−140 | 36.3 | 3.25 | −0.015 | 0.9999958 | 0.02 | 0.03 | 0.300 | −57.5 | 1 | 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Langhals, H. A Basic Approach to Equations of States for Studying the Real Behavior of Noble Gases. Liquids 2025, 5, 2. https://doi.org/10.3390/liquids5010002
Langhals H. A Basic Approach to Equations of States for Studying the Real Behavior of Noble Gases. Liquids. 2025; 5(1):2. https://doi.org/10.3390/liquids5010002
Chicago/Turabian StyleLanghals, Heinz. 2025. "A Basic Approach to Equations of States for Studying the Real Behavior of Noble Gases" Liquids 5, no. 1: 2. https://doi.org/10.3390/liquids5010002
APA StyleLanghals, H. (2025). A Basic Approach to Equations of States for Studying the Real Behavior of Noble Gases. Liquids, 5(1), 2. https://doi.org/10.3390/liquids5010002