Special Issue "Genomic Impact of Transposable Elements"

A special issue of Life (ISSN 2075-1729). This special issue belongs to the section "Genetics and Genomics".

Deadline for manuscript submissions: 21 June 2021.

Special Issue Editor

Dr. Kyudong Han
E-Mail Website
Guest Editor
Department of Nanobiomedical Science , BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119, Dandae-ro, Dongnam-gu, Cheonan-si, Chungnam, 31116, Korea
Interests: comparative genomics; transposable element; genomic instability; genomic rearrangement; species-specific transposable element; molecular marker; phylogenetic analysis

Special Issue Information

Dear Colleagues,

Transposable elements (TEs) have been found in a variety of genomes. TEs are a major source of genetic diversity in eukaryotes. TEs have played an important role in the diversification and enrichment of mammalian transcriptomes. These elements are associated with genomic instability, cancer, epigenetics, gene expression, biomarkers, and DNA repair. We invite investigators to contribute original research articles as well as review articles that will stimulate the continuing efforts to understand TEs’ significance in the host genome. We are interested in articles that explore aspects of genomic/genetic diversity mediated by TEs in all mammals. Potential topics include but are not limited to:

  • Genomic rearrangement by transposable elements;
  • Phylogenetic relationship based on transposable elements;
  • Genetic conflict between host and transposable elements;
  • Role of transposable elements in host factors and epigenetics;
  • Population genetics study by transposable elements;
  • Transposable element research by next-generation sequencing;
  • Transposable elements as a molecular biomarker.

Dr. Kyudong Han
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Life is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Review

Review
Role of Transposable Elements in Gene Regulation in the Human Genome
Life 2021, 11(2), 118; https://doi.org/10.3390/life11020118 - 04 Feb 2021
Cited by 1 | Viewed by 813
Abstract
Transposable elements (TEs), also known as mobile elements (MEs), are interspersed repeats that constitute a major fraction of the genomes of higher organisms. As one of their important functional impacts on gene function and genome evolution, TEs participate in regulating the expression of [...] Read more.
Transposable elements (TEs), also known as mobile elements (MEs), are interspersed repeats that constitute a major fraction of the genomes of higher organisms. As one of their important functional impacts on gene function and genome evolution, TEs participate in regulating the expression of genes nearby and even far away at transcriptional and post-transcriptional levels. There are two known principal ways by which TEs regulate the expression of genes. First, TEs provide cis-regulatory sequences in the genome with their intrinsic regulatory properties for their own expression, making them potential factors for regulating the expression of the host genes. TE-derived cis-regulatory sites are found in promoter and enhancer elements, providing binding sites for a wide range of trans-acting factors. Second, TEs encode for regulatory RNAs with their sequences showed to be present in a substantial fraction of miRNAs and long non-coding RNAs (lncRNAs), indicating the TE origin of these RNAs. Furthermore, TEs sequences were found to be critical for regulatory functions of these RNAs, including binding to the target mRNA. TEs thus provide crucial regulatory roles by being part of cis-regulatory and regulatory RNA sequences. Moreover, both TE-derived cis-regulatory sequences and TE-derived regulatory RNAs have been implicated in providing evolutionary novelty to gene regulation. These TE-derived regulatory mechanisms also tend to function in a tissue-specific fashion. In this review, we aim to comprehensively cover the studies regarding these two aspects of TE-mediated gene regulation, mainly focusing on the mechanisms, contribution of different types of TEs, differential roles among tissue types, and lineage-specificity, based on data mostly in humans. Full article
(This article belongs to the Special Issue Genomic Impact of Transposable Elements)
Show Figures

Figure 1

Review
Bioinformatics Analysis of Evolution and Human Disease Related Transposable Element-Derived microRNAs
Life 2020, 10(6), 95; https://doi.org/10.3390/life10060095 - 25 Jun 2020
Cited by 3 | Viewed by 896
Abstract
Transposable element (TE) has the ability to insert into certain parts of the genome, and due to this event, it is possible for TEs to generate new factors and one of these factors are microRNAs (miRNA). miRNAs are non-coding RNAs made up of [...] Read more.
Transposable element (TE) has the ability to insert into certain parts of the genome, and due to this event, it is possible for TEs to generate new factors and one of these factors are microRNAs (miRNA). miRNAs are non-coding RNAs made up of 19 to 24 nucleotides and numerous miRNAs are derived from TE. In this study, to support general knowledge on TE and miRNAs derived from TE, several bioinformatics tools and databases were used to analyze miRNAs derived from TE in two aspects: evolution and human disease. The distribution of TEs in diverse species presents that almost half of the genome is covered with TE in mammalians and less than a half in other vertebrates and invertebrates. Based on selected evolution-related miRNAs studies, a total of 51 miRNAs derived from TE were found and analyzed. For the human disease-related miRNAs, total of 34 miRNAs derived from TE were organized from the previous studies. In summary, abundant miRNAs derived from TE are found, however, the function of miRNAs derived from TE is not informed either. Therefore, this study provides theoretical understanding of miRNAs derived from TE by using various bioinformatics tools. Full article
(This article belongs to the Special Issue Genomic Impact of Transposable Elements)
Show Figures

Figure 1

Back to TopTop