Special Issue "Application of Omics Technologies for a Deeper Insight into the Study of Fungal Trunk Pathogens of Grapevine"

A special issue of Journal of Fungi (ISSN 2309-608X). This special issue belongs to the section "Fungal Genomics, Genetics and Molecular Biology".

Deadline for manuscript submissions: 30 November 2021.

Special Issue Editors

Dr. David Gramaje
E-Mail Website
Guest Editor
Institute of Grapevine and Wine Sciences (ICVV), La Rioja, Spain
Interests: plant pathology; phytopathology; fungal disease; vitis vinifera; trunk disease; molecular diagnosis; fungal taxonomy; disease management; fungal microbiome
Dr. Ales Eichmeier
E-Mail Website
Guest Editor
Faculty of Horticulture, Mendeleum - Institute of Genetics, Mendel University in Brno, Brno, Czech Republic
Interests: high-throughput sequencing; bioinformatics; plant pathology; metagenomics; small RNA; grapevine trunk pathogens

Special Issue Information

Dear Colleagues,

Grapevine trunk diseases (GTDs) have become a major concern worldwide, causing significant economic impact resulting from reduced production and vineyard longevity. These diseases are caused by a wide range of fungal pathogens producing a range of symptoms, including: leaf and shoot distortion and discoloration, external wood cankers and dieback, internal wood necrosis and staining, poor growth, mortality of roots, and sudden vine collapse. The prevalence of GTDs has significantly increased with changes in production practices, loss of effective chemicals, predominance of susceptible cultivars, and ageing of vineyards. Successful disease management requires a holistic approach from the nursery to the vineyard.

On the last several decades, the study of plant–pathogen interaction was boosted by the advent of new technologies and the application of multiple omics platforms. Omics technologies reflect the dynamic concept of biological processes and provide a contemporary approach to mycology research for fungal pathogen management by identifying whole genomes (genomics); epigenetic mechanisms (epigenomics); transcriptomes (transcriptomics), proteomes (proteomics), metabolomes (metabolomics); bacterial and fungal communities, protozoa, viruses and viroids (metagenomics); the total elemental composition of organisms (ionomics); the structure and function of the complete set of lipids (lipidomics); and phenotypes (phenomics).

The aim of this Special Issue is to cover multiple aspects of grapevine fungal trunk pathogen interactions, with emphasis on the application of individual- and multi-omics-based technologies to propose novel or improve current management strategies. 

Dr. David Gramaje
Dr. Ales Eichmeier
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Fungi is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • NGS, HTS
  • bioinformatics
  • multi-omics
  • small molecules
  • grapevine trunk diseases
  • vitis vinifera
  • multidisciplinary research

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Article
The Mycorrizal Status in Vineyards Affected by Esca
J. Fungi 2021, 7(10), 869; https://doi.org/10.3390/jof7100869 - 16 Oct 2021
Viewed by 414
Abstract
In this work we analyzed the relationship among native arbuscular mycorrhizal fungi (AMF) and vine roots affected by esca, a serious grapevine trunk disease. The AMF symbiosis was analyzed on the roots of neighboring plants (symptomatic and asymptomatic to esca) in 14 sites [...] Read more.
In this work we analyzed the relationship among native arbuscular mycorrhizal fungi (AMF) and vine roots affected by esca, a serious grapevine trunk disease. The AMF symbiosis was analyzed on the roots of neighboring plants (symptomatic and asymptomatic to esca) in 14 sites of three vineyards in Marche region (central–eastern Italy). The AMF colonization intensity, identified by non-vital staining, showed higher value in all esca symptomatic plants (ranging from 24.6% to 61.3%) than neighboring asymptomatic plants (from 17.4% to 57.6%). The same trend of Glomeromycota phylum abundance was detected by analyzing fungal operational taxonomic units (OTUs) linked to the AMF community, obtained by amplicon high throughput analysis of ITS 1 region. Overall, the highest amount of OTUs was detected on roots from symptomatic plants (0.42%), compared to asymptomatic roots (0.29%). Specific primer pairs for native Rhizophagus irregularis and Funneliformis mosseae AMF species, were designed in 28S rRNA and large subunit (LSU) ribosomal RNA, respectively, and droplet digital PCR protocol for absolute quantification was set up. A higher number of DNA copies of both fungal species were detected more frequently in symptomatic than asymptomatic vines. Our study suggests a relationship between esca and native AMF in grapevine. These results underline the importance of native rhizosphere microbial communities for a better knowledge of grapevine esca disease. Full article
Show Figures

Figure 1

Article
Drought Influences Fungal Community Dynamics in the Grapevine Rhizosphere and Root Microbiome
J. Fungi 2021, 7(9), 686; https://doi.org/10.3390/jof7090686 - 25 Aug 2021
Cited by 2 | Viewed by 951
Abstract
Plant roots support complex microbial communities that can influence nutrition, plant growth, and health. In grapevine, little is known about the impact of abiotic stresses on the belowground microbiome. In this study, we examined the drought-induced shifts in fungal composition in the root [...] Read more.
Plant roots support complex microbial communities that can influence nutrition, plant growth, and health. In grapevine, little is known about the impact of abiotic stresses on the belowground microbiome. In this study, we examined the drought-induced shifts in fungal composition in the root endosphere, the rhizosphere and bulk soil by internal transcribed spacer (ITS) high-throughput amplicon sequencing (HTAS). We imposed three irrigation regimes (100%, 50%, and 25% of the field capacity) to one-year old grapevine rootstock plants cv. SO4 when plants had developed 2–3 roots. Root endosphere, rhizosphere, and bulk soil samples were collected 6- and 12-months post-plantation. Drought significantly modified the overall fungal composition of all three compartments, with the root endosphere compartment showing the greatest divergence from well-watered control (100%). The overall response of the fungal microbiota associated with black-foot disease (Dactylonectria and “Cylindrocarpon” genera) and the potential biocontrol agent Trichoderma to drought stress was consistent across compartments, namely that their relative abundances were significantly higher at 50–100% than at 25% irrigation regime. We identified a significant enrichment in several fungal genera such as the arbuscular mycorrhizal fungus Funneliformis during drought at 25% watering regime within the roots. Our results reveal that drought stress, in addition to its well-characterized effects on plant physiology, also results in the restructuring of grapevine root microbial communities, and suggest the possibility that members of the altered grapevine microbiota might contribute to plant survival under extreme environmental conditions. Full article
Show Figures

Figure 1

Article
Comparative Study of Secreted Proteins, Enzymatic Activities of Wood Degradation and Stilbene Metabolization in Grapevine Botryosphaeria Dieback Fungi
J. Fungi 2021, 7(7), 568; https://doi.org/10.3390/jof7070568 - 16 Jul 2021
Cited by 1 | Viewed by 591
Abstract
Botryosphaeriaceae fungi are plant pathogens associated with Botryosphaeria dieback. To better understand the virulence factors of these fungi, we investigated the diversity of secreted proteins and extracellular enzyme activities involved in wood degradation and stilbene metabolization in Neofusicoccum parvum and Diplodia seriata, [...] Read more.
Botryosphaeriaceae fungi are plant pathogens associated with Botryosphaeria dieback. To better understand the virulence factors of these fungi, we investigated the diversity of secreted proteins and extracellular enzyme activities involved in wood degradation and stilbene metabolization in Neofusicoccum parvum and Diplodia seriata, which are two major fungi associated with grapevine B. dieback. Regarding the analysis of proteins secreted by the two fungi, our study revealed that N. parvum, known to be more aggressive than D. seriata, was characterized by a higher quantity and diversity of secreted proteins, especially hydrolases and oxidoreductases that are likely involved in cell wall and lignin degradation. In addition, when fungi were grown with wood powder, the extracellular laccase and Mn peroxidase enzyme activities were significantly higher in D. seriata compared to N.parvum. Importantly, our work also showed that secreted Botryosphaeriaceae proteins produced after grapevine wood addition are able to rapidly metabolize the grapevine stilbenes. Overall, a higher diversity of resveratrol and piceatannol metabolization products was found with enzymes of N. parvum compared to D. seriata. This study emphasizes the diversity of secreted virulence factors found in B. dieback fungi and suggests that some resveratrol oligomers produced in grapevine wood after pathogen attack could be formed via pathogenic fungal oxidases. Full article
Show Figures

Figure 1

Article
Trunk Surgery as a Tool to Reduce Foliar Symptoms in Diseases of the Esca Complex and Its Influence on Vine Wood Microbiota
J. Fungi 2021, 7(7), 521; https://doi.org/10.3390/jof7070521 - 29 Jun 2021
Cited by 2 | Viewed by 762
Abstract
In the last few years, trunk surgery has gained increasing attention as a method to reduce foliar symptoms typical of some of the Esca complex diseases. The technique relies on the mechanical removal of decayed wood by a chainsaw. A study on a [...] Read more.
In the last few years, trunk surgery has gained increasing attention as a method to reduce foliar symptoms typical of some of the Esca complex diseases. The technique relies on the mechanical removal of decayed wood by a chainsaw. A study on a 14-year-old Cabernet Sauvignon vineyard was carried out to validate the efficacy of trunk surgery and explore possible explanations behind it. Three levels of treatment were applied to three of the most characteristic symptoms associated with some diseases of the Esca complex, such as leaf stripe symptoms (LS), wilted shoots (WS) and apoplexy (APP). The most promising results were obtained by complete trunk surgery, where the larger decay removal allowed lower symptom re-expression. According to the wood types analyzed (decay, medium and sound wood), different changes in microbiota were observed. Alpha-diversity generally decreased for bacteria and increased for fungi. More specifically, main changes were observed for Fomitiporia mediterranea abundance that decreased considerably after trunk surgery. A possible explanation for LS symptom reduction after trunk surgery could be the microbiota shifting caused by the technique itself affecting a microbic-shared biochemical pathway involved in symptom expression. Full article
Show Figures

Figure 1

Article
Impacts of Sodium Arsenite on Wood Microbiota of Esca-Diseased Grapevines
J. Fungi 2021, 7(7), 498; https://doi.org/10.3390/jof7070498 - 22 Jun 2021
Cited by 2 | Viewed by 497
Abstract
Although sodium arsenite was widely used in Europe until its ban in 2003, its effects on microorganisms is not clearly understood. To improve our understanding of sodium arsenite curative effect on GTDs, grapevines displaying esca-foliar symptoms from different French regions (Alsace, Champagne, Languedoc) [...] Read more.
Although sodium arsenite was widely used in Europe until its ban in 2003, its effects on microorganisms is not clearly understood. To improve our understanding of sodium arsenite curative effect on GTDs, grapevines displaying esca-foliar symptoms from different French regions (Alsace, Champagne, Languedoc) were treated or not with sodium arsenite, and analyzed for their wood microbiota. Using metabarcoding, we identified the fungal and bacterial taxa composition of microbiota colonizing woody trunk tissues. Large differences in fungal microbiota composition between treated and untreated grapevines were observed while no major impacts were observed on bacteria microbiota. The main fungal species detected in untreated necrotic woody tissues was Fomitiporia mediterranea (63–94%), a fungal pathogen associated with esca. The relative abundance of this fungal species significantly decreased after sodium arsenite treatment in the three vineyards, in particular in white-rot necrotic tissues and their borders (−90%). F. mediterranea was the most sensitive to sodium arsenite among fungi from grapevine woody tissues. These results strongly suggest that the effect of sodium arsenite on GTDs is due to its ability to efficiently and almost specifically eliminate F. mediterranea from white-rot necrotic tissues, allowing saprobic fungi to colonize the tissues previously occupied by this pathogenic fungus. Full article
Show Figures

Figure 1

Article
Comparative Genomic Analysis of Dactylonectria torresensis Strains from Grapevine, Soil and Weed Highlights Potential Mechanisms in Pathogenicity and Endophytic Lifestyle
J. Fungi 2020, 6(4), 255; https://doi.org/10.3390/jof6040255 - 29 Oct 2020
Cited by 4 | Viewed by 1377
Abstract
The soil-borne fungus Dactylonectria torresensis is the most common causal agent of black-foot disease in Europe. However, there is a lack of understanding on how this fungus can provoke plant symptoms. In this study, we sequenced, annotated and analyzed the genomes of three [...] Read more.
The soil-borne fungus Dactylonectria torresensis is the most common causal agent of black-foot disease in Europe. However, there is a lack of understanding on how this fungus can provoke plant symptoms. In this study, we sequenced, annotated and analyzed the genomes of three isolates of D. torresensis collected from asymptomatic vine, weed and soil. Sequenced genomes were further compared to those of 27 fungal species including root and aerial pathogens, white rot degraders, indoor biodeterioration agents, saprotrophs, dark septate endophytes and mycorrhiza. Strains of D. torresensis present genomes with between 64 and 65 Mbp and with up to 18,548 predicted genes for each strain. Average Nucleotide Identity (ANI) shows that strains are different according to genome contents. Clusters of orthologous groups were compared, and clusters of genes related to necroses were particularly detected in all strains of D. torresensis (necrosis inducing peptides and proteins, and ethylene inducing peptides) as well as several genes involved in resistance against fungicides frequently used in viticulture such as copper. Interestingly, an expanded high number of genes related to carbohydrate-active enzymes were detected in each Dactylonectria strain, especially those related to glycoside hydrolases that could be involved in penetration of plant tissues or pathogenicity. An increased number of candidate genes for CAZyme classes AA9 and AA3-1 supports the ability of strains to efficiently degrade plant material. High numbers of genes of D. torresensis related to secretome and small secreted proteins were further characterized. Moreover, the presence of several gene clusters such as fujikurin-like genes was detected and were normally found in Fusariumfujikuroi, that have been linked to fungal pathogenicity. The phenotypes of the three strains investigated showed further difference in light response. We found that Dactylonectria strains have an increased number of photoreceptor encoding genes and we showed sequence alterations. Altogether, the results highlight several gene clusters present in D. torresensis strains that could be linked to endophytic lifestyle, pathogenicity, plant maceration and degradation of plant tissues as well as adaptation to soil contaminated with metals and metalloids and light response. Full article
Show Figures

Figure 1

Review

Jump to: Research

Review
White Rot Fungi (Hymenochaetales) and Esca of Grapevine: Insights from Recent Microbiome Studies
J. Fungi 2021, 7(9), 770; https://doi.org/10.3390/jof7090770 - 17 Sep 2021
Viewed by 580
Abstract
Esca is a major grapevine trunk disease that heavily affects vineyards in the Northern hemisphere. The etiology and epidemiology of this disease have been subject of dispute ever since the earliest disease reports. The reason behind such debate is the presence of multiple [...] Read more.
Esca is a major grapevine trunk disease that heavily affects vineyards in the Northern hemisphere. The etiology and epidemiology of this disease have been subject of dispute ever since the earliest disease reports. The reason behind such debate is the presence of multiple internal and external symptoms, as well as several putative and confirmed wood pathogens. While the role of pathogenic fungi, as causal agents of wood symptoms, has been thoroughly assessed, their role in the expression of leaf symptoms remains to be fully elucidated. In this review, we analyzed etiological and epidemiological data, with a special focus on the microbiological aspect of esca and the involvement of Hymenochaetales (Basidiomycota). Vineyard studies have associated leaf symptoms with the presence of white rot, most frequently caused by Fomitiporia mediterranea (Hymenochaetales), while tracheomycotic fungi are commonly found, with similar abundance, in symptomatic and asymptomatic vines. Pathogenicity trials have excluded a direct effect of Hymenochaetales species in triggering leaf symptoms, while the data concerning the role of tracheomycotic fungi remains controversial. Recent microbiome studies confirmed that F. mediterranea is more abundant in leaf-symptomatic vines, and treatments that effectively control leaf symptoms, such as sodium arsenite spray and trunk surgery, act directly on the abundance of F. mediterranea or on the presence of white rot. This suggest that the simultaneous presence of Hymenochaetales and tracheomycotic fungi is a pre-requisite for leaf symptoms; however, the relation among fungal pathogens, grapevine and other biotic and abiotic factors needs further investigation. Full article
Show Figures

Figure 1

Back to TopTop