Advances in Research on Entomopathogenic Fungi

A special issue of Journal of Fungi (ISSN 2309-608X). This special issue belongs to the section "Fungi in Agriculture and Biotechnology".

Deadline for manuscript submissions: 30 September 2025 | Viewed by 156

Special Issue Editor


E-Mail Website
Guest Editor
Department of Epidemiology and Public Health, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropedica, RJ, Brazil
Interests: microbial control of arthropods with emphasis on the use of entomopathogenic fungi; epidemiology; public health

Special Issue Information

Dear Colleagues,

This research topic aims to publish original articles and reviews on entomopathogenic fungi (EPF), focusing on their use as biological control agents. Key areas include molecular taxonomy, strain isolation, molecular characterization, and virulence against arthropods of agricultural, veterinary, and public health importance. It also welcomes studies on arthropod immune responses to EPF, contributing to the understanding of host–pathogen interactions. Emphasis is placed on biotechnological tools to identify and apply genes or gene products that enhance EPF efficacy, as well as on advances in the ecology of biological control agents. Contributions exploring infection mechanisms, gene expression in fungal differentiation and pathogenicity, and metabolites linked to virulence and host specificity are strongly encouraged. By integrating molecular biology, biotechnology, and ecology, this research topic provides a platform for advancing knowledge in EPF-based pest and vector management. Submissions addressing related or emerging themes in this field are also welcome.

Dr. Isabele da Costa Angelo
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Fungi is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • entomopathogenic fungi
  • biological control
  • molecular taxonomy
  • fungal virulence
  • arthropod immunity
  • biotechnological tools
  • pathogenicity genes
  • host–pathogen interaction
  • fungal metabolites
  • pest management

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 1961 KiB  
Article
Age-Dependent Immune Defense Against Beauveria bassiana in Long- and Short-Lived Drosophila Populations
by Elnaz Bagheri, Han Yin, Arnie Lynn C. Bengo, Kshama Ekanath Rai, Taryn Conyers, Robert Courville, Mansour Abdoli, Molly K. Burke and Parvin Shahrestani
J. Fungi 2025, 11(8), 556; https://doi.org/10.3390/jof11080556 - 27 Jul 2025
Abstract
Aging in sexually reproducing organisms is shaped by the declining force of natural selection after reproduction begins. In Drosophila melanogaster, experimental evolution shows that altering the age of reproduction shifts the timing of aging. Using the Drosophila experimental evolution population (DEEP) resource, [...] Read more.
Aging in sexually reproducing organisms is shaped by the declining force of natural selection after reproduction begins. In Drosophila melanogaster, experimental evolution shows that altering the age of reproduction shifts the timing of aging. Using the Drosophila experimental evolution population (DEEP) resource, which includes long- and short- lived populations evolved under distinct reproductive schedules, we investigated how immune defense against Beauveria bassiana changes with age and evolved lifespan. We tested survival post-infection at multiple ages and examined genomic differentiation for immune-related genes. Both population types showed age-related declines in immune defense. Long-lived populations consistently exhibited age-specific defense when both long- and short-lived populations were tested. Genomic comparisons revealed thousands of differentiated loci, yet no enrichment for canonical immune genes or overlap with gene sets from studies of direct selection for immunity. These results suggest that enhanced immune defense can evolve alongside extended lifespan, likely via general physiological robustness rather than traditional immune pathways. A more detailed analysis may reveal that selection for lifespan favors tolerance-based mechanisms that reduce infection damage without triggering immune activation, in contrast to direct selection for resistance. Our findings demonstrate the utility of experimentally evolved populations for dissecting the genetic architecture of aging and immune defense to inform strategies to mitigate age-related costs associated with immune activation. Full article
(This article belongs to the Special Issue Advances in Research on Entomopathogenic Fungi)
Show Figures

Figure 1

Back to TopTop