Biological Control of Fungal Diseases, 2nd Edition

A special issue of Journal of Fungi (ISSN 2309-608X). This special issue belongs to the section "Fungi in Agriculture and Biotechnology".

Deadline for manuscript submissions: 31 October 2025 | Viewed by 459

Special Issue Editor


E-Mail Website
Guest Editor

Special Issue Information

Dear Colleagues,

Fungal diseases represent a serious threat for agricultural production and food security worldwide. They significantly decrease the quality and quantity of agricultural commodities, causing heavy economic losses.

According to current sustainability policies, there is a general tendency to reduce the usage of synthetic fungicides, whereas biocontrol-based approaches of phytopathogenic fungi are increasingly attracting researcher interest. In addition to providing an overview of the latest insights into the mode of actions, advantages and applications of biological control of fungi, this Special Issue will provide new findings about the use of (i) biological control agents (BCAs); (ii) bio-molecules, bio-inspired compounds, natural compounds and plant extracts; and (iii) eco-friendly techniques aimed at both achieving biological management and decreasing the impact of fungal diseases on crops, agro-ecosystems and human health. Thus, the main goal of this Special Issue is to encourage the development of innovative and sustainable biocontrol-based approaches for fungal disease management. Research, review and perspective articles as well as short communications are welcome.

Dr. Alessandro Vitale
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Fungi is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • post-harvest diseases
  • biological control
  • fungal diseases
  • diseases of tropical fruits

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 3034 KiB  
Article
The Resistance Mechanisms of Anilinopyrimidine Fungicide Pyrimethanil in Sclerotinia sclerotiorum
by Yanfen Wang, Zeyuan Chen, Tiancheng Liu, Xupeng Gao, Yanchao Shi, Honghui Wu, Runqiang Liu, Yunchao Kan, Hao Yu and Feng Zhou
J. Fungi 2025, 11(5), 344; https://doi.org/10.3390/jof11050344 - 28 Apr 2025
Viewed by 44
Abstract
The necrotrophic pathogen Sclerotinia sclerotiorum is widely distributed and infects a broad range of hosts, making it one of the most economically damaging plant pathogens. This study demonstrated that pyrimethanil, an anilinopyrimidine fungicide, exhibited potent activity against S. sclerotiorum, with EC50 [...] Read more.
The necrotrophic pathogen Sclerotinia sclerotiorum is widely distributed and infects a broad range of hosts, making it one of the most economically damaging plant pathogens. This study demonstrated that pyrimethanil, an anilinopyrimidine fungicide, exhibited potent activity against S. sclerotiorum, with EC50 values ranging from 0.411 to 0.610 μg/mL. Four highly pyrimethanil-resistant mutants were obtained through chemical taming, with EC50 values of 7.247 to 24.718 μg/mL. These mutants exhibited significantly reduced mycelial growth, sclerotia production, and pathogenicity compared to their wild-type parental isolates, indicating that pyrimethanil resistance suffered a fitness penalty in S. sclerotiorum. Notably, three mutants (DDJH-Pyri-R1, DDJH-Pyri-R3, and DDJH-Pyri-R4), completely lose the capacity to infect detached tomato leaves. Point mutations that cause amino acid changes in the predicted sequence of cystathione-γ synthase (CGS) and cystathione-β lyase (CBL), encoded by SsCGS1 and SsCGS2, were identified in three mutants. However, one mutant (DDJH-Pyri-R2) showed no mutations in these genes, suggesting an alternative resistance mechanism. Molecular docking revealed that mutations in SsCGS1-R3, SsCGS1-R4, and SsCGS2-R1 reduced the binding affinity between pyrimethanil and SsCGSs. No cross-resistance was observed between pyrimethanil and other commonly used fungicides, including carbendazim, fludioxonil, prochloraz, tebuconazole, pyraclostrobin, boscalid, fluazinam, and cyprodinil. These findings provide valuable insights for designing resistance inhibitors and suggest that pyrimethanil has significant potential for controlling soybean sclerotinia stem rot (SSR) caused by S. sclerotiorum. Full article
(This article belongs to the Special Issue Biological Control of Fungal Diseases, 2nd Edition)
Show Figures

Figure 1

21 pages, 5344 KiB  
Article
Evaluating the Role of Nutrient Competition in Debaryomyces hansenii Biocontrol Activity Against Spoilage Molds in the Meat Industry
by Helena Chacón-Navarrete, Ignacio García-Álvarez de Toledo, José Ramos and Francisco Javier Ruiz-Castilla
J. Fungi 2025, 11(4), 242; https://doi.org/10.3390/jof11040242 - 22 Mar 2025
Viewed by 332
Abstract
The rejection of chemical preservatives reflects the growing demand for natural and safe products. This concern has spurred scientific interest in yeasts as biocontrol agents, given their antagonistic activity against undesired fungi, which is one of the main problems associated with preservative reduction. [...] Read more.
The rejection of chemical preservatives reflects the growing demand for natural and safe products. This concern has spurred scientific interest in yeasts as biocontrol agents, given their antagonistic activity against undesired fungi, which is one of the main problems associated with preservative reduction. Debaryomyces hansenii is a non-conventional yeast that has shown great potential for inhibiting filamentous fungi in the food industry. This study investigated the role of nutrient competition in the biocontrol activity of D. hansenii against unwanted molds. Potentially pathogenic molds from spoiled food were isolated using different media and identified using Sanger sequencing. The inhibitory effects of different autochthonous D. hansenii strains under varying nutrient conditions were assessed against isolated molds using semipermeable membranes. Inhibition activity was measured by assessing mycelial expansion and spore production using image software analysis and classical cell counting using a Neubauer chamber. The results indicated that D. hansenii effectively inhibited mold growth and sporulation, with the autochthonous strains LR2 and SRF1 showing higher inhibitory activity than the control strain CBS767. The effectiveness of inhibition varied with the yeast–mold combination, highlighting the need for a species-specific analysis. Nutrient competition plays a complementary role in D. hansenii biocontrol but does not directly impact overall inhibition. This suggests that other mechanisms, such as direct cell interactions or metabolite production, may be crucial. These findings enhance our understanding of the potential of D. hansenii as a natural preservative and advance biocontrol methods for food safety. Full article
(This article belongs to the Special Issue Biological Control of Fungal Diseases, 2nd Edition)
Show Figures

Figure 1

Back to TopTop