Innovations in Direct and Indirect Dental Composite Restorations

A special issue of Journal of Composites Science (ISSN 2504-477X). This special issue belongs to the section "Composites Manufacturing and Processing".

Deadline for manuscript submissions: 31 August 2025 | Viewed by 7312

Special Issue Editors


E-Mail Website
Guest Editor
Department of Oral and Maxillofacial Sciences, Sapienza University, University of Rome, 00161 Rome, Italy
Interests: restorative dentistry; endodontics; oral microbiology; implantology; dental imaging

Special Issue Information

Dear Colleagues,

It is our great pleasure to present this Special Issue, which aims to extend and share knowledge on the possibilities offered by new composite and metal-free materials in adhesive restorative dentistry. The use of minimally invasive treatments is increasing in each field of medicine, particularly in dentistry, attracting the ever-growing interest of clinicians and researchers from all around the world. The main objective of future research is to obtain long-term success, while simultaneously preventing the loss of dental tissue as much as possible. The possibility of invasiveness reduction in dental rehabilitation is mainly caused by innovations in technologies, techniques, and materials. The latter guarantees great results both in terms of aesthetic and mechanical aspects, making them efficient both for posterior and anterior rehabilitation. Moreover, the great effectiveness offered by innovative adhesive protocols and molecules represents the future of dental restorations. Despite this, scientific research in this field is still limited, and the full potential of innovations in dentistry remains unexplored. In this context, we look forward to receiving submissions of interesting in vitro, ex vivo, and in vivo studies on the mechanical, aesthetic, and functional properties of new composite and metal-free materials, considering the whole procedural process behind adhesive rehabilitation, from the residual structure analysis to cavity preparation design, build-ups, and post-insertion.

Furthermore, we hope that clinicians who have been working with these new technologies for many years will be inclined to share their fascinating findings.

Prof. Dr. Luca Testarelli
Dr. Alessio Zanza
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Composites Science is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • restorative dentistry
  • aesthetic dentistry
  • adhesion
  • veneers
  • inlay
  • onlay
  • overlay

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 3278 KiB  
Article
Masking Ability and Translucency of Direct Gingiva-Colored Resin-Based Restorative Materials
by Thanasak Rakmanee, Seelassaya Leelaponglit, Chadinthorn Janyajirawong, Apisada Bannagijsophon, Kamon Budsaba and Awiruth Klaisiri
J. Compos. Sci. 2025, 9(1), 27; https://doi.org/10.3390/jcs9010027 - 8 Jan 2025
Viewed by 555
Abstract
This study aimed to investigate the effects of shade, thickness, and the application of an opaquer on the masking ability and translucency of direct gingiva-colored giomer. Five shades of giomer, namely Gum-Light-Pink, Gum-Dark-Pink, Gum-Brown, Gum-Violet, and Gum-Orange, were evaluated at thicknesses of 0.5, [...] Read more.
This study aimed to investigate the effects of shade, thickness, and the application of an opaquer on the masking ability and translucency of direct gingiva-colored giomer. Five shades of giomer, namely Gum-Light-Pink, Gum-Dark-Pink, Gum-Brown, Gum-Violet, and Gum-Orange, were evaluated at thicknesses of 0.5, 1.0, 1.5, and 2.0 mm. Color measurements were obtained using a spectrophotometer against white, black, and giomer backgrounds. The results were analyzed using the CIEDE2000 color-difference formula and interpreted based on the 50:50% thresholds for excellent perceptibility (ΔE00 < 1.1) and acceptability (ΔE00 < 2.8). Measurements were repeated after applying an opaquer. Acceptable masking ability was achieved at 0.5 mm for all shades. Excellent masking ability was achieved at 1.5 mm for all shades, except Gum-Brown, which required 1.0 mm. The opaquer increased masking ability in all specimens. Translucency decreased as thickness increased (p < 0.0001). Gum-Brown and Gum-Light-Pink, as well as Gum-Orange and Gum-Dark-Pink, demonstrated similar translucency at 0.5, 1.0, and 1.5 mm (p > 0.05). After applying the opaquer, there were no statistically significant differences in translucency among shades at 1.5 mm and 2.0 mm (p > 0.05). In conclusion, increasing thickness improved masking ability but reduced translucency of gingiva-colored material. The opaquer further enhanced masking ability and reduced translucency. The clinical significance of these results are that gingiva-colored restorations mask discolored tooth defects in the pink aesthetic area with minimal 0.5 mm tooth preparation, achieving acceptable results. The addition of an opaquer enhances masking ability for excellent outcomes. Full article
(This article belongs to the Special Issue Innovations in Direct and Indirect Dental Composite Restorations)
Show Figures

Figure 1

12 pages, 4021 KiB  
Article
Home Bleaching Effects on the Surface Gloss, Translucency, and Roughness of CAD/CAM Multi-Layered Ceramic and Hybrid Ceramic Materials
by Mohamed M. Kandil, Ali Abdelnabi, Tamer M. Hamdy, Rania E. Bayoumi and Maha S. Othman
J. Compos. Sci. 2024, 8(12), 541; https://doi.org/10.3390/jcs8120541 - 20 Dec 2024
Viewed by 733
Abstract
The surface qualities of CAD/CAM multi-layered ceramic and hybrid ceramic materials are critical for superior aesthetics and may be impaired by the application of home bleaching. The aim of this study was to assess how home bleaching affects the surface gloss, translucency parameter [...] Read more.
The surface qualities of CAD/CAM multi-layered ceramic and hybrid ceramic materials are critical for superior aesthetics and may be impaired by the application of home bleaching. The aim of this study was to assess how home bleaching affects the surface gloss, translucency parameter (TP), and surface roughness (Ra, Rq, and Rz) of different CAD/CAM multi-layered ceramic and hybrid ceramic dental materials. The two types of innovative ceramics that were tested are ultra-translucent multi-layered (UTML) zirconia and polymer-infiltrated ceramic blocks. The samples were treated using home bleaching agents. Each specimen was tested under bleached and non-bleached conditions. The surface gloss and TP of the specimens were measured using a spectrophotometer. The surface examination was performed using scanning electron microscope (SEM) images, while the average surface roughness values (Ra, Rq, and Rz) were calculated using three-dimensional SEM images obtained by an imaging analysis system. A total of 120 disc-shaped resin composite specimens was distributed randomly according to each material in two main groups (n = 60): a control group immersed in 20 mL distilled water (non-bleached) (n = 30), and a second group treated with 20 mL of a home bleaching agent (Crest 3D White Multi-Care Whitening Mouthwash) for 60 s, twice daily for seven days (bleached) (n = 30). The surface gloss, TP, and surface roughness (n = 10 per test for each group) of each group (bleached and non-bleached) was tested. An independent sample t-test was used statistically to assess the effect of home bleaching on the surface gloss, translucency, and roughness of each ceramic material and to compare the two materials. The significance level was adjusted at p ≤ 0.05. The results of the bleached UTML specimens showed no significant changes regarding surface gloss, TP, and roughness, whereas the bleached Vita Enamic specimens showed a significant reduction in surface gloss and TP and increased surface roughness. Moreover, the UTML specimens showed a significantly higher initial surface gloss and TP, and a reduced surface roughness, contrary to the Vita Enamic specimens. This study concluded that surface gloss retention, translucency, and surface roughness could be negatively influenced when subjected to home bleaching according to the type and composition of the ceramic materials. Full article
(This article belongs to the Special Issue Innovations in Direct and Indirect Dental Composite Restorations)
Show Figures

Figure 1

11 pages, 1663 KiB  
Article
Selected Mechanical Properties of Dental Hybrid Composite with Fluorine, Hydroxyapatite and Silver Fillers
by Zofia Kula, Leszek Klimek, Katarzyna Dąbrowska, Cristina Bettencourt Neves and João Carlos Roque
J. Compos. Sci. 2024, 8(6), 232; https://doi.org/10.3390/jcs8060232 - 20 Jun 2024
Cited by 1 | Viewed by 1762
Abstract
In recent years, hydroxyapatite, as a ceramic material, has been a subject of growing interest due to its optimal biological properties, which are useful especially in medical and dental applications. It has been increasingly used in dentistry as a filler in composites. Nevertheless, [...] Read more.
In recent years, hydroxyapatite, as a ceramic material, has been a subject of growing interest due to its optimal biological properties, which are useful especially in medical and dental applications. It has been increasingly used in dentistry as a filler in composites. Nevertheless, research has shown a deterioration of their mechanical properties. The aim of this study was to investigate the influence of the content of hydroxyapatite together with fluorine and silver on the mechanical properties of a hybrid composite used in conservative dentistry. The authors compared specimens of commercial hybrid composite with specimens of experimental hybrid composite containing 2 wt% and 5 wt% of hydroxyapatite powder with fluorine and silver. The composite specimens were subjected to hardness and impact strength measurements, as well as bending, compression, and tribological wear tests. The research results indicate that the mechanical properties of composites are influenced by the type and amount of filler used. Composite containing 2 wt% of hydroxyapatite powder along with calcium fluoride and silver provided acceptable results. Full article
(This article belongs to the Special Issue Innovations in Direct and Indirect Dental Composite Restorations)
Show Figures

Figure 1

12 pages, 671 KiB  
Article
Alterations in Surface Gloss and Hardness of Direct Dental Resin Composites and Indirect CAD/CAM Composite Block after Single Application of Bifluorid 10 Varnish: An In Vitro Study
by Tamer M. Hamdy, Ali Abdelnabi, Maha S. Othman and Rania E. Bayoumi
J. Compos. Sci. 2024, 8(2), 58; https://doi.org/10.3390/jcs8020058 - 3 Feb 2024
Cited by 2 | Viewed by 1797
Abstract
The surface characteristics of the restorative material are essential to its longevity. Since resin composites are polymeric-based materials, they could be degraded when exposed to oral conditions and chemical treatment. Certain chemical solutions, such as fluoride varnish, have the potential to deteriorate the [...] Read more.
The surface characteristics of the restorative material are essential to its longevity. Since resin composites are polymeric-based materials, they could be degraded when exposed to oral conditions and chemical treatment. Certain chemical solutions, such as fluoride varnish, have the potential to deteriorate the resin composite’s surface properties such as gloss and hardness. The current study aimed to assess and compare the surface gloss and hardness of different types of dental resin composites (nanohybrid, ormocer, bulk-fill flowable direct composites, and indirect CAD/CAM resin composite blocks (BreCAM.HIPC)) after a single application of Bifluorid 10 varnish. A total of 80 disc-shaped resin composite specimens were evenly distributed in four groups of 20 specimens. These were divided into two equal subgroups of specimens with topical fluoride (TF) application (n = 10) and without TF application (n = 10). The specimens were examined for surface gloss and hardness. Independent sample t-test was used to investigate statistically the effect of TF on the gloss as well as the hardness of each material. One-way ANOVA and post hoc tests were used to assess the difference in gloss and hardness among the materials without and with TF application. The significance level was adjusted to p ≤ 0.05. The results of gloss showed that the TF application led to a significant reduction in gloss values of all tested composites. The gloss among the various materials was significantly different. The TF had no significant effect on the hardness of nanohybrid, bulk-fill flowable, and BreCAM.HIPC composites (p = 0.8, 0.6, and 0.3, respectively). On the other hand, the hardness of ormocer was significantly reduced after TF application. Comparing the different resin composite materials, the hardness significantly differed. This study concluded that surface gloss and hardness seem to be impacted by the type and composition of the resin composites and vary depending on fluoride application. Full article
(This article belongs to the Special Issue Innovations in Direct and Indirect Dental Composite Restorations)
Show Figures

Figure 1

11 pages, 779 KiB  
Article
Flexural Behavior of Biocompatible High-Performance Polymer Composites for CAD/CAM Dentistry
by Hanin E. Yeslam
J. Compos. Sci. 2023, 7(7), 270; https://doi.org/10.3390/jcs7070270 - 30 Jun 2023
Cited by 4 | Viewed by 1699
Abstract
High-performance polymeric materials have been used in computer-assisted design/ computer-assisted milling (CAD/CAM) dental restorative treatments due to their favorable esthetics as well as their mechanical and biological properties. Biocompatible poly-ether-ether-ketone (PEEK) and glass-fiber-reinforced composite techno-polymer (FRC) resins reportedly possess good flexural and shock [...] Read more.
High-performance polymeric materials have been used in computer-assisted design/ computer-assisted milling (CAD/CAM) dental restorative treatments due to their favorable esthetics as well as their mechanical and biological properties. Biocompatible poly-ether-ether-ketone (PEEK) and glass-fiber-reinforced composite techno-polymer (FRC) resins reportedly possess good flexural and shock absorption properties. However, intraoral thermal fluctuations may adversely affect them. This study aimed to investigate the flexural strength and effect of thermal aging on two commercially available high-performance polymers intended for CAD/CAM milled frameworks for definitive restorations. A total of 20 bar specimens were prepared using two CAD/CAM materials (n = 10); PEEK(P) and Bioloren FRC(F). Specimens from each material group were randomly divided into two sub-groups (n = 5): before aging (uP and uF) and after aging, with 10,000 thermocycles (5–55 °C) (aP and aF). All specimens were subjected to a three-point bending test in a universal testing machine. Flexural strength (Fs) values were calculated for all specimens, and their means were statistically analyzed using a t-test, and a general linear model (GLM) repeated measure ANOVA (p < 0.05). There was a statistically significant decrease in the Fs of (F) materials after aging (p = 0.03). (F) specimens exhibited significantly higher Fs than (P) before and after aging (p < 0.001). This type of material had a significant effect on Fs (p < 0.001). Within the limitations of this study, both materials exceeded the ISO recommendations of dental resins for flexural strength. However, FRC materials may benefit CAD/CAM milled long-span fixed partial dentures and implant-supported denture frameworks. Full article
(This article belongs to the Special Issue Innovations in Direct and Indirect Dental Composite Restorations)
Show Figures

Figure 1

Back to TopTop