Medical Applications of Particle Physics, 2nd Edition

Special Issue Editor


E-Mail Website
Guest Editor
Center for Particle Physics, University of Siegen, Walter-Flex-Str. 3, 57072 Siegen, Germany
Interests: experimental particle physics; development of photon and gaseous detectors; medical applications of photon detectors in the MeV range
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The field of new detectors and methods originating from particle physics and used for medical applications is strongly growing. For this reason, there will be a second edition of the Special Issue “Medical Applications of Particle Physics”.

Medical imaging and the treatment of diseases like cancer have profited widely from developments in particle physics. The high demands of precision measurements at particle accelerators like the LHC have made a strong impact on the development of new or improved types of detectors as well as on the development of algorithms for the analysis of huge amounts of data. The requirements on energy, timing, and position resolution are steadily increasing, and with huge collaborative efforts areas that were not accessible in the past have been reached. Detector components developed for particle physics experiments are being used for medical applications with only minor modifications. The same holds true for analysis techniques developed in particle physics and finding use in medicine. Turnover times have been strongly reduced by close collaborations between particle physics and medicine. There are many success stories, like better image resolution enabling the detection of even smaller carcinoma and consequently decreasing the mortality rate dramatically. With better resolution, the required dose and consequently the secondary effects on patients are greatly reduced. The combined efforts of both the particle physics and medical communities are needed to make full use of the arising opportunities.

In this Special Issue, recent developments and advances in applications as well as state-of-the-art overviews of particle physics in medicine will be collated.

Topics include, but are not limited to, the following:

  • Positron electron tomography (PET).
  • Single-photon emission computed tomography (SPECT).
  • Particle therapy.
  • Dose monitoring.
  • Accelerators for particle therapy.
  • Radiation therapy.
  • Radionuclide production.
  • Development of detectors and their applications in medicine.
  • Fast detectors.
  • 10ps challenge.
  • Algorithms for pattern recognition.
  • Multivariant analysis techniques for medical applications.

Prof. Dr. Ivor Fleck
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Instruments is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • instrumentation
  • particle accelerators
  • medical application
  • particle physics
  • proton therapy
  • PET
  • detector development

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

12 pages, 4843 KiB  
Article
Development of TR-19 Cyclotron Parameter Settings for Fully Automated Production of Radiometals with Applications in Nuclear Medicine
by Liviu Ștefan Crăciun, Tiberiu Relu Eșanu, Radu Leonte, Hermann Anton Schubert, Raul Victor Erhan and Dana Niculae
Instruments 2025, 9(1), 3; https://doi.org/10.3390/instruments9010003 - 26 Feb 2025
Viewed by 385
Abstract
At the Radiopharmaceutical Research Center (CCR) of the Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering (IFIN-HH), we operate a TR-19 cyclotron for radio isotope production. To broaden our spectrum of radioisotopes with applications in nuclear medicine, we add a [...] Read more.
At the Radiopharmaceutical Research Center (CCR) of the Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering (IFIN-HH), we operate a TR-19 cyclotron for radio isotope production. To broaden our spectrum of radioisotopes with applications in nuclear medicine, we add a new external beam line towards a state-of-the-art solid target station. Besides practical experience with the implementation of the Comecer ALCEO metal solid targetry system, a new, more efficient way of tuning the beam onto the target and the design of a dedicated neutron local layered shielding are presented. Full article
(This article belongs to the Special Issue Medical Applications of Particle Physics, 2nd Edition)
Show Figures

Figure 1

16 pages, 1408 KiB  
Article
Feasibility Study of a PET Detector with a Wavelength-Shifting Fiber Readout
by Anzori Sh. Georgadze
Instruments 2025, 9(1), 2; https://doi.org/10.3390/instruments9010002 - 5 Feb 2025
Viewed by 791
Abstract
We designed and evaluated the performance of a high-resolution large-area detector for positron emission tomography (PET) based on a crystal assembly readout using wavelength-shifting (WLS) fibers, offering a cost-effective alternative to the direct readout of monolithic crystals with photodetectors. The considered detector geometries [...] Read more.
We designed and evaluated the performance of a high-resolution large-area detector for positron emission tomography (PET) based on a crystal assembly readout using wavelength-shifting (WLS) fibers, offering a cost-effective alternative to the direct readout of monolithic crystals with photodetectors. The considered detector geometries were made up of 4 × 4 assemblies of LuY2SiO5:Ce (LYSO) crystal scintillators, each with surface area of 50 × 50 mm2 and thickness of 7 or 15 mm, which were optically coupled together using optical adhesive. The crystal assembly was coupled with square cross-sections of orthogonal wavelength-shifting (WLS) fibers placed on the top and bottom of the assembly. To evaluate the characteristics of the novel detector, we used GEANT4 to perform optical photon transport in the crystal assembly and WLS fibers. The simulation results show that best position resolution achieved was 1.6 ± 0.4 mm full width at half maximum (FWHM) and 4.2 ± 0.6 mm full width at tenth maximum (FWTM) for the crystal thickness of 7 mm and 1.7 ± 0.4 mm FWHM and 6.0 ± 0.6 mm FWTM for the crystal thickness of 15 mm. Compared with a direct photosensor readout, WLS fibers can drastically reduce the number of photosensors required while covering a larger sensitive detection area. In the proposed detector design, 2N photodetectors are used to cover the same image area instead of N2 with a direct readout. This design allows for the development of a compact detector with an expanded effective field of view and reduced cost. Full article
(This article belongs to the Special Issue Medical Applications of Particle Physics, 2nd Edition)
Show Figures

Figure 1

Back to TopTop