Advanced Inorganic Nanomaterials for Energy Conversion and Catalysis Applications

A special issue of Inorganics (ISSN 2304-6740). This special issue belongs to the section "Inorganic Materials".

Deadline for manuscript submissions: 15 August 2025 | Viewed by 6247

Special Issue Editors


E-Mail Website
Guest Editor
College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
Interests: crystalline; electrodes; cobalt; electrochemical deposition technique; electronic characterization; electrical properties
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Advanced Applied Materials Engineering, Kun Shan University, Tainan 71070, Taiwan
Interests: electrochemical catalyst; rechargeable battery; ceramic material

Special Issue Information

Dear Colleagues,

Until today, inorganic nanomaterials for energy conversion and catalysis have become increasingly significant in academic research and industrial applications compared to before, such as in air purification, wastewater treatment, bacterial disinfection, and medical science. This is primarily due to unique properties such as their nanoporosity, optical absorption, intense crystalline phases, high specific surface areas, nanomorphology, and high oxidation. Hence, they play a vital role in the successful design of composite catalysts with enhanced efficiency and selectivity and a steady catalytic activity.

This Special Issue aims to track the most recent advances in inorganic nanomaterials in energy conversion and catalysis applications by hosting a mix of original research articles and comprehensive reviews.

Dr. Guan-Ting Pan
Prof. Dr. Chao-Ming Huang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Inorganics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • catalysis
  • composites
  • nanoparticles
  • band gap
  • electron transfer
  • characterization
  • electrochemistry
  • catalysis applications

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

13 pages, 6588 KiB  
Article
Direct Synthesis of LiAlH4 from Ti-Doped Active LiAl Alloy
by Yan Chu, Shiwei Fang, Yingjue Chen, Xiaoqi Zhang, Jie Zheng, Zhenglong Li, Wubin Du, Wengang Cui, Jian Miao, Yaxiong Yang, Yongfeng Liu, Mingxia Gao and Hongge Pan
Inorganics 2025, 13(3), 74; https://doi.org/10.3390/inorganics13030074 - 1 Mar 2025
Viewed by 266
Abstract
LiAlH4, characterized by high hydrogen capacity and metastable properties, is regarded as a promising hydrogen source under mild conditions. However, its reversible regeneration from dehydrogenated production is hindered thermodynamically and kinetically. Herein, we demonstrate an active Li–Al–Ti nanocrystalline alloy prepared by [...] Read more.
LiAlH4, characterized by high hydrogen capacity and metastable properties, is regarded as a promising hydrogen source under mild conditions. However, its reversible regeneration from dehydrogenated production is hindered thermodynamically and kinetically. Herein, we demonstrate an active Li–Al–Ti nanocrystalline alloy prepared by melt spinning and cryomilling to enable directly synthesizing nano-LiAlH4. Due to the non-equilibrium preparation methods, the grain/particle size of the alloy was reduced, stress defects were introduced, and the dispersion of the Ti catalyst was promoted. The refined Li–Al–Ti nanocrystalline alloy with abundant defects and uniform catalytic sites demonstrated a high reactivity of the particle surface, thereby enhancing hydrogen absorption and desorption kinetics. Nano-LiAlH4 was directly obtained by ball milling a 5% Ti containing Li–Al–Ti nanocrystalline alloy with a grain size of 17.4 nm and Al3Ti catalytic phase distributed under 20 bar hydrogen pressure for 16 h. The obtained LiAlH4 exhibited room temperature dehydrogenation performance and good reversibility. This finding provides a potential strategy for the non-solvent synthesis and direct hydrogenation of metastable LiAlH4 hydrogen storage materials. Full article
Show Figures

Graphical abstract

15 pages, 5450 KiB  
Article
Synthesis of Sulfonic Acid-Functionalized g-C3N4/BiOI Bifunctional Heterojunction for Enhanced Photocatalytic Removal of Tartrazine and PEC Oxygen Evolution Reaction
by Sridharan Balu, Harikrishnan Venkatesvaran, Chien-Chih Wang, Joon Ching Juan and Thomas Chung-Kuang Yang
Inorganics 2024, 12(9), 243; https://doi.org/10.3390/inorganics12090243 - 5 Sep 2024
Viewed by 1174
Abstract
A Z-scheme heterojunction photo(electro)catalyst was fabricated by coupling sulfonic acid-modified graphitic carbon nitride (SA-g-CN) with bismuth oxyiodide (BiOI). The SA-g-CN component was prepared via wet-impregnation, while BiOI was synthesized through a hydrothermal method. Comprehensive characterization elucidated the structural and morphological properties of the [...] Read more.
A Z-scheme heterojunction photo(electro)catalyst was fabricated by coupling sulfonic acid-modified graphitic carbon nitride (SA-g-CN) with bismuth oxyiodide (BiOI). The SA-g-CN component was prepared via wet-impregnation, while BiOI was synthesized through a hydrothermal method. Comprehensive characterization elucidated the structural and morphological properties of the resulting composite. The SA-g-CN/BiOI exhibited exceptional performance in both photocatalytic degradation of tartrazine (TTZ) and photoelectrochemical oxygen evolution reaction (OER). Notably, 98.26% TTZ removal was achieved within 60 min of irradiation, while an OER onset potential of 0.94 V (vs. Ag/AgCl) and a high photocurrent density of 6.04 mA were recorded under AM 1.5G illumination. Band energy calculations based on Mott–Schottky measurements confirmed the formation of a Z-scheme heterojunction, which facilitated efficient charge separation and transfer, thereby enhancing catalytic activity. These findings establish the SA-g-CN/BiOI composite as a promising candidate for sustainable energy generation and environmental remediation applications. Full article
Show Figures

Figure 1

24 pages, 7873 KiB  
Article
CuFe2O4 Nanofiber Incorporated with a Three-Dimensional Graphene Sheet Composite Electrode for Supercapacitor and Electrochemical Sensor Application
by Sivaramakrishnan Vinothini, Arjunan Karthi Keyan, Subramanian Sakthinathan, Te-Wei Chiu and Naratip Vittayakorn
Inorganics 2024, 12(6), 164; https://doi.org/10.3390/inorganics12060164 - 12 Jun 2024
Cited by 3 | Viewed by 1491
Abstract
The demand for regenerative energy and electric automotive applications has grown in recent decades. Supercapacitors have multiple applications in consumer alternative electronic products due to their excellent energy density, rapid charge/discharge time, and safety. CuFe2O4-incorporated three-dimensional graphene sheet (3DGS) [...] Read more.
The demand for regenerative energy and electric automotive applications has grown in recent decades. Supercapacitors have multiple applications in consumer alternative electronic products due to their excellent energy density, rapid charge/discharge time, and safety. CuFe2O4-incorporated three-dimensional graphene sheet (3DGS) nanocomposites were studied by different characterization studies such as X-ray diffraction, transmission electron microscopy, and scanning electron microscopy. The electrochemical studies were based on cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), and electrochemical impedance spectroscopy (EIS) measurements. As prepared, 3DGS/CuFe2O4 nanocomposites exhibited an excellent surface area, high energy storage with appreciable durability, and excellent electrocatalysis properties. A supercapacitor with 3DGS/CuFe2O4-coated nickel foam (NF) electrodes exhibited an excellent specific capacitance of 488.98 Fg−1, a higher current density, as well as a higher power density. After charge–discharge cycles in a 2.0 M KOH aqueous electrolyte solution, the 3DGS/CuFe2O4/NF electrodes exhibited an outstanding cyclic stability of roughly 95% at 10 Ag−1, indicating that the prepared nanocomposites could have the potential for energy storage applications. Moreover, the 3DGS/CuFe2O4 electrode exhibited an excellent electrochemical detection of chloramphenicol with a detection limit of 0.5 µM, linear range of 5–400 µM, and electrode sensitivity of 3.7478 µA µM−1 cm−2. Full article
Show Figures

Graphical abstract

Review

Jump to: Research

32 pages, 5535 KiB  
Review
Synthesis and Structural Engineering of Transition Metal Sulfides: Advances in Improving Hydrogen Evolution Reaction Catalytic Efficiency
by Yanhong Ding, Zhichao Gao and Haiyan Xiang
Inorganics 2025, 13(3), 84; https://doi.org/10.3390/inorganics13030084 - 14 Mar 2025
Viewed by 125
Abstract
Transition metal sulfide (TMS)-based electrocatalysts have received considerable attention in the field of sustainable energy, especially for their high activity in the hydrogen evolution reaction (HER). This review summarizes how researchers have improved the performance of TMSs by adjusting their composition. This review [...] Read more.
Transition metal sulfide (TMS)-based electrocatalysts have received considerable attention in the field of sustainable energy, especially for their high activity in the hydrogen evolution reaction (HER). This review summarizes how researchers have improved the performance of TMSs by adjusting their composition. This review introduces the research background of transition metal sulfides and clarifies the reaction mechanism of the HER and its performance evaluation indicators. Then, it elaborates on the general synthesis techniques for preparing TMS materials, including hydrothermal methods, electrochemical deposition, liquid-phase exfoliation, chemical vapor deposition, and other methods. Moreover, it discusses the realization of excellent electrocatalytic performance in the HER through doping, hole treatment, heterostructures, and multi-sulfides. Finally, this review summarizes the current challenges and future development opportunities of TMS materials in the field of water electrolysis for hydrogen production. Full article
Show Figures

Figure 1

29 pages, 10767 KiB  
Review
Emerging Carbon-Based Catalysts for the Oxygen Reduction Reaction: Insights into Mechanisms and Applications
by Jing Guo, Yuqi Yao, Xin Yan, Xue Meng, Qing Wang, Yahui Zhang, Shengxue Yan, Xue Zhao and Shaohua Luo
Inorganics 2024, 12(12), 303; https://doi.org/10.3390/inorganics12120303 - 25 Nov 2024
Cited by 1 | Viewed by 1581
Abstract
The oxygen reduction reaction (ORR), as a key electrode process in fuel cells and metal-air batteries, plays a pivotal role in advancing clean energy technologies. However, the slow kinetics and high overpotential of the ORR significantly limit the efficiency of these energy devices. [...] Read more.
The oxygen reduction reaction (ORR), as a key electrode process in fuel cells and metal-air batteries, plays a pivotal role in advancing clean energy technologies. However, the slow kinetics and high overpotential of the ORR significantly limit the efficiency of these energy devices. Therefore, the development of efficient, stable, and cost-effective ORR catalysts has become a central focus of current research. Carbon-based catalysts, with their excellent conductivity, chemical stability, and tunable structural features, have emerged as promising alternatives to traditional precious metal catalysts. Nevertheless, challenges remain in the design of active sites, the tuning of electronic structures, and the large-scale synthesis of carbon-based catalysts. This review systematically introduces the fundamental mechanisms and key factors influencing the ORR, providing an analysis of the critical variables that affect catalyst performance. Furthermore, it summarizes several common methods for synthesizing carbon-based catalysts, including pyrolysis, deposition, and ball milling. Following this, the review categorizes and discusses the latest advancements in metal-free carbon-based catalysts, single-atom and dual-atom catalysts, as well as metal-based nanoparticle catalysts, with a particular focus on their mechanisms for enhancing the ORR performance. Finally, the current state of research on carbon-based ORR catalysts is summarized, and future development directions are proposed, emphasizing the optimization of active sites, improvements in catalyst stability, and potential strategies for large-scale applications. Full article
Show Figures

Figure 1

Back to TopTop