ijms-logo

Journal Browser

Journal Browser

Special Issue "Electrophysiology"

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Biochemistry".

Deadline for manuscript submissions: 30 June 2020.

Special Issue Editors

Dr. Sheng-Nan Wu
E-Mail
Guest Editor
National Cheng Kung University Medical College, Tainan, Taiwan
Interests: electrophysiology
Dr. Chin-Wei Huang
E-Mail
Guest Editor
National Cheng Kung University Hospital, Tainan, Taiwan
Interests: epilepsy

Special Issue Information

Dear Colleagues,

Ion channels can select ions to pass through the cell membrane in a wide variety of cells. These different types of ion channels act to modulate the activities of Na+, Ca2+, and K+ channels in controlling cell excitability. Moreover, cellular electrophysiological studies have indicated that different ion channels such as HCN channels or voltage-gated K+ channels have been essential for various cell functions, such as seizure or pain sensation. Recent emerging progress in the pharmacological characterization of ion channels modulated by different compounds has shown the fundamental importance of ion channels in physiology, pharmacology, and various disorders.

Dr. Sheng-Nan Wu
Dr. Chin-Wei Huang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • ionic current
  • hyperpolarization-activated cation current
  • electroporation-induced current
  • diterpenoid
  • oxaliplatin

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Open AccessArticle
Characterization of Convergent Suppression by UCL-2077 (3-(Triphenylmethylaminomethyl)pyridine), Known to Inhibit Slow Afterhyperpolarization, of erg-Mediated Potassium Currents and Intermediate-Conductance Calcium-Activated Potassium Channels
Int. J. Mol. Sci. 2020, 21(4), 1441; https://doi.org/10.3390/ijms21041441 - 20 Feb 2020
Abstract
UCL-2077 (triphenylmethylaminomethyl)pyridine) was previously reported to suppress slow afterhyperpolarization in neurons. However, the information with respect to the effects of UCL-2077 on ionic currents is quite scarce. The addition of UCL-2077 decreased the amplitude of erg-mediated K+ current (IK(erg) [...] Read more.
UCL-2077 (triphenylmethylaminomethyl)pyridine) was previously reported to suppress slow afterhyperpolarization in neurons. However, the information with respect to the effects of UCL-2077 on ionic currents is quite scarce. The addition of UCL-2077 decreased the amplitude of erg-mediated K+ current (IK(erg)) together with an increased deactivation rate of the current in pituitary GH3 cells. The IC50 and KD values of UCL-2077-induced inhibition of IK(erg) were 4.7 and 5.1 μM, respectively. UCL-2077 (10 μM) distinctly shifted the midpoint in the activation curve of IK(erg) to less hyperpolarizing potentials by 17 mV. Its presence decreased the degree of voltage hysteresis for IK(erg) elicitation by long-lasting triangular ramp pulse. It also diminished the probability of the opening of intermediate-conductance Ca2+-activated K+ channels. In cell-attached current recordings, UCL-2077 raised the frequency of action currents. When KCNH2 mRNA was knocked down, a UCL-2077-mediated increase in AC firing was attenuated. Collectively, the actions elaborated herein conceivably contribute to the perturbating effects of this compound on electrical behaviors of excitable cells. Full article
(This article belongs to the Special Issue Electrophysiology)
Show Figures

Figure 1

Open AccessArticle
Characterization of Inhibitory Effectiveness in Hyperpolarization-Activated Cation Currents by a Group of ent-Kaurane-Type Diterpenoids from Croton tonkinensis
Int. J. Mol. Sci. 2020, 21(4), 1268; https://doi.org/10.3390/ijms21041268 - 13 Feb 2020
Abstract
Croton is an extensive flowering plant genus in the spurge family, Euphorbiaceae. Three croton compounds with the common ent-kaurane skeleton have been purified from Croton tonkinensis. Methods: We examined any modifications of croton components (i.e., croton-01 [ent-18-acetoxy-7α-hydroxykaur-16-en-15-one], croton-02 [ [...] Read more.
Croton is an extensive flowering plant genus in the spurge family, Euphorbiaceae. Three croton compounds with the common ent-kaurane skeleton have been purified from Croton tonkinensis. Methods: We examined any modifications of croton components (i.e., croton-01 [ent-18-acetoxy-7α-hydroxykaur-16-en-15-one], croton-02 [ent-7α,14β-dihydroxykaur-16-en-15-one] and croton-03 [ent-1β-acetoxy-7α,14β-dihydroxykaur-16-en-15-one] on either hyperpolarization-activated cation current (Ih) or erg-mediated K+ current identified in pituitary tumor (GH3) cells and in rat insulin-secreting (INS-1) cells via patch-clamp methods. Results: Addition of croton-01, croton-02, or croton-03 effectively and differentially depressed Ih amplitude. Croton-03 (3 μM) shifted the activation curve of Ih to a more negative potential by approximately 11 mV. The voltage-dependent hysteresis of Ih was also diminished by croton-03 administration. Croton-03-induced depression of Ih could not be attenuated by SQ-22536 (10 μM), an inhibitor of adenylate cyclase, but indeed reversed by oxaliplatin (10 μM). The Ih in INS-1 cells was also depressed effectively by croton-03. Conclusion: Our study highlights the evidence that these ent-kaurane diterpenoids might conceivably perturb these ionic currents through which they have high influence on the functional activities of endocrine or neuroendocrine cells. Full article
(This article belongs to the Special Issue Electrophysiology)
Show Figures

Figure 1

Open AccessArticle
Characterization in Dual Activation by Oxaliplatin, a Platinum-Based Chemotherapeutic Agent of Hyperpolarization-Activated Cation and Electroporation-Induced Currents
Int. J. Mol. Sci. 2020, 21(2), 396; https://doi.org/10.3390/ijms21020396 - 08 Jan 2020
Abstract
Oxaliplatin (OXAL) is regarded as a platinum-based anti-neoplastic agent. However, its perturbations on membrane ionic currents in neurons and neuroendocrine or endocrine cells are largely unclear, though peripheral neuropathy has been noted during its long-term administration. In this study, we investigated how the [...] Read more.
Oxaliplatin (OXAL) is regarded as a platinum-based anti-neoplastic agent. However, its perturbations on membrane ionic currents in neurons and neuroendocrine or endocrine cells are largely unclear, though peripheral neuropathy has been noted during its long-term administration. In this study, we investigated how the presence of OXAL and other related compounds can interact with two types of inward currents; namely, hyperpolarization-activated cation current (Ih) and membrane electroporation-induced current (IMEP). OXAL increased the amplitude or activation rate constant of Ih in a concentration-dependent manner with effective EC50 or KD values of 3.2 or 6.4 μM, respectively, in pituitary GH3 cells. The stimulation by this agent of Ih could be attenuated by subsequent addition of ivabradine, protopine, or dexmedetomidine. Cell exposure to OXAL (3 μM) resulted in an approximately 11 mV rightward shift in Ih activation along the voltage axis with minimal changes in the gating charge of the curve. The exposure to OXAL also effected an elevation in area of the voltage-dependent hysteresis elicited by long-lasting triangular ramp. Additionally, its application resulted in an increase in the amplitude of IMEP elicited by large hyperpolarization in GH3 cells with an EC50 value of 1.3 μM. However, in the continued presence of OXAL, further addition of ivabradine, protopine, or dexmedetomidine always resulted in failure to attenuate the OXAL-induced increase of IMEP amplitude effectively. Averaged current-voltage relation of membrane electroporation-induced current (IMEP) was altered in the presence of OXAL. In pituitary R1220 cells, OXAL-stimulated Ih remained effective. In Rolf B1.T olfactory sensory neurons, this agent was also observed to increase IMEP in a concentration-dependent manner. In light of the findings from this study, OXAL-mediated increases of Ih and IMEP may coincide and then synergistically act to increase the amplitude of inward currents, raising the membrane excitability of electrically excitable cells, if similar in vivo findings occur. Full article
(This article belongs to the Special Issue Electrophysiology)
Show Figures

Figure 1

Back to TopTop